Skip to main content
Log in

State of the art and prospects of structured sensing matrices in compressed sensing

  • Research Article
  • Published:
Frontiers of Computer Science Aims and scope Submit manuscript

Abstract

Compressed sensing (CS) enables people to acquire the compressed measurements directly and recover sparse or compressible signals faithfully even when the sampling rate is much lower than the Nyquist rate. However, the pure random sensing matrices usually require huge memory for storage and high computational cost for signal reconstruction. Many structured sensing matrices have been proposed recently to simplify the sensing scheme and the hardware implementation in practice. Based on the restricted isometry property and coherence, couples of existing structured sensing matrices are reviewed in this paper, which have special structures, high recovery performance, and many advantages such as the simple construction, fast calculation and easy hardware implementation. The number of measurements and the universality of different structure matrices are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shannon C. Communication in the presence of noise. Proceedings of the Institute of Radio Engineers (IRE), 1949, 37(1): 10–21

    MathSciNet  Google Scholar 

  2. Nyquist H. Certain topics in telegraph transmission theory. Transactions of the American Institute of Electrical Engineers, 1928, 47(2): 617–644

    Article  Google Scholar 

  3. Donoho DL. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(7): 1289–1306

    Article  MathSciNet  MATH  Google Scholar 

  4. Candès E, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489–509

    Article  MATH  Google Scholar 

  5. Candès E, Tao T. Near optimal signal recovery from random projections: universal encoding strategies. IEEE Transactions on Information Theory, 2006, 52: 5406–5425

    Article  MATH  Google Scholar 

  6. Candès E, Wakin M. An introduction to compressive sampling. IEEE Signal Processing Magazine, 2008, 25(2): 21–30

    Article  Google Scholar 

  7. Baraniuk R. Compressive sensing. IEEE Signal Processing Magazine, 2007, 24(4): 118–121

    Article  Google Scholar 

  8. Candès E, Romberg J. Practical signal recovery from random projections. Proceedings of Society of Photographic Instrumentation Engineers, 2005, 5674: 76–86

    Google Scholar 

  9. Haupt J, Nowak R. Signal reconstruction from noisy random projections. IEEE Transactions on Information Theory, 2006, 52(9): 4036–4048

    Article  MathSciNet  MATH  Google Scholar 

  10. Candès E, Romberg J. Quantitative robust uncertainty principles and optimally sparse decompositions. Foundations of Computational Mathematics, 2006, 6(8): 227–254

    Article  MathSciNet  MATH  Google Scholar 

  11. Donoho D, Elad M, Temlyakov V. Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Transactions on Information Theory, 2006, 52(1): 6–18

    Article  MathSciNet  MATH  Google Scholar 

  12. Tropp J, Gilbert A. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 2007, 53(12): 4655–4666

    Article  MathSciNet  MATH  Google Scholar 

  13. Calderbank R, Howard S, Jafarpour S. Construction of a large class of deterministic sensing matrices that satisfy a statistical isometry property. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 358–374

    Article  Google Scholar 

  14. Donoho DL, Elad M. Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization. Proceedings of National Academy of Sciences, 2003, 100(5): 2197–2202

    Article  MathSciNet  MATH  Google Scholar 

  15. Tropp J. Greed is good: algorithmic results for sparse approximation. IEEE Transactions on Information Theory, 2004, 50(10): 2231–2242

    Article  MathSciNet  MATH  Google Scholar 

  16. Candès E, Plan Y. Near-ideal model selection by l1 minimization. Annals of Statistics, 2009, 37(5): 2145–2177

    Article  MathSciNet  MATH  Google Scholar 

  17. Rudelson M, Vershynin R. On sparse reconstruction from Fourier and Gaussian measurements. Communications on Pure and Applied Mathematics, 2008, 61(8): 1025–1045

    Article  MathSciNet  MATH  Google Scholar 

  18. Duarte M, Eldar Y. Structured compressed sensing: From theory to applications. IEEE Transactions on Signal Processing, 2011, 59(9): 4053–4085

    Article  MathSciNet  Google Scholar 

  19. Candès E, Plan Y. A probabilistic and RIPless theory of com-pressed sensing. IEEE Transaction on Information Theory, 2011, 57(11): 7235–7254

    Article  Google Scholar 

  20. Candès E, Romberg J. Sparsity and incoherence in compressive sampling. Inverse Problems, 2007, 23(6): 969–985

    Article  MathSciNet  MATH  Google Scholar 

  21. Bajwa WU, Haupt JD, Raz GM, Wright SJ, Nowak RD. Toeplitzstructured compressed sensing matrices. In: Proceedings of IEEE/SP the 14th Workshop on Statistical Signal Processing, 2007, 8: 294–298

    Google Scholar 

  22. Haupt J, Bajwa W, Raz G, Nowak R. Toeplitz compressed sensing matrices with applications to sparse channel estimation. IEEE Transactions on Information Theory, 2010, 56(11): 5862–5875

    Article  MathSciNet  Google Scholar 

  23. Rauhut H. Circulant and Toeplitz matrices in compressed sensing. In Proceedings of Signal Processing with Adaptive Sparse Structured Representations, 2009, 1–6

    Google Scholar 

  24. Tropp J, Laska J, Duarte M, Romberg J, Baraniuk R. Beyond Nyquist: Effcient sampling of sparse bandlimited signals. IEEE Transactions on Information Theory, 2010, 56(1): 520–544

    Article  MathSciNet  Google Scholar 

  25. Romberg J. Compressive sensing by random convolution. SIAM Journal on Imaging Scicences, 2009, 2(4): 1098–1128

    Article  MathSciNet  MATH  Google Scholar 

  26. Romberg J. Sensing by random convolution. In: Proceedings of the 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing. 2007, 137–140

    Google Scholar 

  27. Do T, Gan L, Nguyen N, Tran T. Fast and efficient compressive sensing using structurally random matrices. IEEE Transactions on Signal Processing, 2012, 60(1): 139–154

    Article  MathSciNet  Google Scholar 

  28. Do T, Tran T and Gan L. Fast compressive sampling with structurally random matrices. In: Proceedings of IEEE International Conference on Acoustics Speech, Signal Process. 2008, 3369–3372

    Google Scholar 

  29. Rauhut H, Romberg J, Tropp J. Restricted isometries for partial random circulate matrices. Applied and Computational Harmonic Analysis, 2012, 32(2): 242–254

    Article  MathSciNet  MATH  Google Scholar 

  30. Zepernick HJ, Finger A. Pseudo Random Signal Processing: Theory and Application. West Sussex: Wiley, 2005

    Google Scholar 

  31. Fan PZ, Darnell M. The synthesis of perfect sequences. Lec-ture notes in Computer Science, 1995, 1025: 63–73

    Article  MathSciNet  Google Scholar 

  32. Applebaum L, Howard S, Searle S, Calderbank R. Chirp sensing codes: deterministic compressed sensing measurements for fast recovery. Applied and Computational Harmonic Analysis, 2009, 26(2): 283–290

    Article  MathSciNet  MATH  Google Scholar 

  33. Gan L, Li K, Ling C. Golay meets hadamard: golay-paired hadamard matrices for fast compressed sensing. In: Proceedings of Information Theory Workshop. 2012, 637–641

    Google Scholar 

  34. Li K, Gan L, Ling C. Convolutional compressed sensing using deterministic sequences. IEEE Transaction on Signal Processing, 2013, 61(3): 740–752

    Article  MathSciNet  Google Scholar 

  35. Gan L, Li K, Ling C. Novel Toeplitz sensing matrices for compressing radar imaging. In Proceedings of International Workshop on Compressed Sensing Applied to Radar Imaging. 2012, 1–6

    Google Scholar 

  36. Gan L. Block compressed sensing of natural images. In: Proceedings of International Conference on Digital Signal Processing. 2007, 403–406

    Google Scholar 

  37. Sebert F, Zou YM, Ying L. Toeplitz block matrices in compressed sensing and their applications in imaging. In: Proceedings of International Conference on Information Technology and Applications. 2008, 47–50

    Google Scholar 

  38. Gan L, Do T, Tran T. Fast compressive imaging using scram-bled block Hadamard ensemble. In: Proceedings of European Signal Processing Conference. 2008, 1–6

    Google Scholar 

  39. Devore RA. Deterministic construction of compressed sensing matrices. Journal of Complexity, 2007, 23: 918–925

    Article  MathSciNet  MATH  Google Scholar 

  40. Saligrama V. Deterministic designs with deterministic guarantees: Toeplitz compressed sensing matrices, sequence design and system identfication. IEEE Transactions on Information Theory, 2012, 99

    Google Scholar 

  41. Iwen MA. Simple deterministically constructible RIP matrices with sub-linear Fourier sampling requirements. In: Proceedings of Conference in Information Sciences and Systems. 2008, 870–875

    Google Scholar 

  42. Monajemi H, Jafarpour S, Gavish M, D. Donoho L, Ambikasaran S, Bacallado S, Bharadia D, Chen Y, Choi Y, Chowdhury M. Deterministic matrices matching the compressed sensing phase transitions of Gaussian random matrices. In: Proceedings of the National Academy of Sciences, 2013, 110(4): 1181–1186

    Article  MathSciNet  MATH  Google Scholar 

  43. Howard S, Calderbank A, and Searle S, A fast reconstruction algorithm for deterministic compressive sensing using second order reed muller codes. In: Proceedings of the 42nd Annual Conference on Information Sciences and Systems. 2008, 11–15

    Google Scholar 

  44. Ailon N, Liberty E. Fast dimension reduction using rademacher series on dual BCH codes. In Proceedings of Annual ACM-SIAM Symposium on Discrete Algorithms. 2008, 1–6

    Google Scholar 

  45. Calderbank R, Howard S, Jafarpour S. A sublinear algorithm for sparse reconstruction with l2/l2 recovery guarantees. In: Proceedings of 3rd IEEE International Workshop on Computational Advances in Multi- Sensor Adaptive Processing. 2009, 209–212

    Google Scholar 

  46. Yu NY. Deterministic compressed sensing matrices from multiplicative character sequences. In: Proceedings of the 45th Annual Conference on Information Sciences and Systems. 2011, 1–5

    Google Scholar 

  47. Alltop W. Complex sequences with low periodic correlations. IEEE Transaction on Information Theory, 1980, 26(3): 350–354

    Article  MathSciNet  MATH  Google Scholar 

  48. Strohmer T, Heath R. Grassmanian frames with applications to coding and communication. Applied and Computational Harmonic Analysis, 2003, 14: 257–275

    Article  MathSciNet  MATH  Google Scholar 

  49. Chen W, Rodrigues M, Wassell I. Projection design for statistical compressive sensing: a tight frame based approach. IEEE Transactions on Signal Processing, 2013, 61(8): 2016–2029

    Article  Google Scholar 

  50. Rauhut H. Compressive sensing and structured random matrices. In: Radon Series Computational and Applied Mathematics, Theoretical Foundations and Numerical Methods for Sparse Recovery. New York: DeGruyter, 2010, 9: 1–92

    MathSciNet  Google Scholar 

  51. Compressive sensing resources. http://www-dsp.rice.edu/cs

  52. Mishali M and Eldar Y, From theory to practice: sub-nyquist sampling of sparse wideband analog signals. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 375–391

    Article  Google Scholar 

  53. Li, K, Ling C, Gan L. Deterministic compressed sensing matrices: where Toeplitz meets Golay. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. 2011, 3748–3751

    Google Scholar 

  54. Li K, Gao S, Ling C, Gan L. Wynerziv coding for distributed compressive sensing. In: Proceedings of Workshop of Signal Processing with Adaptive Sparse Structured Representations, 2011, 1–6

    Google Scholar 

  55. Lustig M, Donoho D, Santos J, Pauly J. Compressed sensing MRI. IEEE Signal Processing Magazine, 2008, 25(2): 72–82

    Article  Google Scholar 

  56. Gorodnitsky IF, George J, Rao B. Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm. cephalography and Clinical Neurophysiology, 1995, 95: 231–251

    Article  Google Scholar 

  57. Lustig M, Donoho D, Pauly JM. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magnetic Resonance in Medicine, 2007, 58(6): 1182–1195

    Article  Google Scholar 

  58. Duarte MF, Davenport MA, Takhar D, Laska JN, Sun T, Kelly KF, Baraniuk RG. Single pixel imaging via compressive sampling. IEEE Signal Processing Magazine, 2008, 83–91

    Google Scholar 

  59. Sampsell J. An overview of the digital micromirror device (DMD) and its application to projection displays. In: Proceedings of International Symposium Digest Technical Papers, 1993, 24: 1012–1015

    Google Scholar 

  60. Takhar D, Laska J, Wakin M, Duarte M, Baron D, Sarvotham S, Kelly K, Baraniuk R. A new compressive imaging camera architecture using optical-domain compression. Computational Imaging IV, 2006, 606: 43–52

    Google Scholar 

  61. Chan WL, Charan K, Takhar D, Kelly KF, Baraniuk RG, Mittleman DM. A single-pixel terahertz imaging system based on compressive sensing. Applied Physics Letters, 2008, 93(12)

    Google Scholar 

  62. Shen H, Newman N, Gan L, Zhong S, Huang Y, Shen Y. Com-pressed terahertz imaging system using a spin disk. In: Proceedings of the 35th International Conference on Infrared, Millimeter and Terahertz Waves. 2010, 1–2

    Chapter  Google Scholar 

  63. Gilbert A, Indyk P. Sparse recovery using sparse matrices. In: Proceedings of the IEEE, 2010, 98(6): 937–947

    Article  Google Scholar 

  64. Xu W, Hassibi B. Efficient compressive sensing with deterministic guarantees using expander graphs. In: Proceeding of IEEE Information Theory Workshop, 2007, 414–419

    Google Scholar 

  65. Krzakala F, Mezard M, Sausset F, Sun YF, Zdeborova L. Statisticalphysics- based reconstruction in compressed sensing. Physical Review X, 2012, 2, 021005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Cong.

Additional information

Kezhi Li is now a research assistant in the Automatic Complex Communication Networks, Signal and Systems Centre, School of Electrical Engineering at the Royal Institute of Technology (KTH), Sweden. He received his PhD in the Imperial College London in 2013. His research interests include signal processing, compressed sensing and its applications in communication, system identification and tomography.

Shuang Cong is a professor in the Department of Automation at the University of Science and Technology of China. She received her PhD in system engineering from the University of Rome “La Sapienza”, Rome, Italy, in 1995. Her research interests include advanced control strategies for motion control, fuzzy logic control, neural networks design and applications, robotic coordination control, and quantum system control.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Cong, S. State of the art and prospects of structured sensing matrices in compressed sensing. Front. Comput. Sci. 9, 665–677 (2015). https://doi.org/10.1007/s11704-015-3326-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11704-015-3326-8

Keywords

Navigation