Frontiers of Computer Science

, Volume 6, Issue 6, pp 660–667 | Cite as

The Internet of data: a new idea to extend the IOT in the digital world

  • Wei Fan
  • Zhengyong ChenEmail author
  • Zhang Xiong
  • Hui Chen
Research Article


Increasingly powerful computational technology has caused enormous data growth both in size and complexity. A key issue is how to organize the data to adapt the challenges of data analysis. This paper borrows ideas from the Internet of things (IOT) into the digital world and organize the data entities to form a network, the Internet of data (IOD), which has huge potential in data-intensive applications. In the IOD, data hiding technology is utilized to embed virtual tags, which record all the activities of the data entities since they are created, into every data entity in the system. The IOD aims to organize the data to be interconnected as a network and collect useful information for data identification, data tracing, data vitalization and further data analysis.


Internet of data (IOD) virtual tags Internet of things (IOT) data-intensive applications data vitalization data hiding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ashton K. That “Internet of things” thing. RFID Journal, 2009, 22: 97–114Google Scholar
  2. 2.
    SRI Consulting Business Intelligence. Appendix F: the Internet of things (background).
  3. 3.
    Gershenfeld N, Krikorian R, Cohen D. The Internet of things. Scientific American, 2004, 291(4): 76–81CrossRefGoogle Scholar
  4. 4.
    Brock D L. The electronic product code (EPC) — a naming scheme for physical objects. Massachusetts: MIT Auto-ID Center White Paper, 2001Google Scholar
  5. 5.
    Huvio E, Grönvall J, Främling K. Tracking and tracing parcels using a distributed computing approach. In: Proceedings of the 14th Annual Conference for Nordic Researchers in Logistics. 2002, 12–14Google Scholar
  6. 6.
    Wikipedia. Internet of things.
  7. 7.
    Want R. An introduction to RFID technology. IEEE Pervasive Computing, 2006, 5(1): 25–33CrossRefGoogle Scholar
  8. 8.
    Hey A G T, Transley S, Tolle KM. The fourth paradigm: data-intensive scientific discovery. Microsoft Research, 2009Google Scholar
  9. 9.
    Collins J P. Sailing on an ocean of 0s and 1s. Science, 2010, 327(5972): 1455–1456CrossRefGoogle Scholar
  10. 10.
    Nielsen M. A guide to the day of big data. Nature, 2009, 462(7274): 722–723CrossRefGoogle Scholar
  11. 11.
    Markoff J. A deluge of data shapes a new era in computing. The New York Times, 2009Google Scholar
  12. 12.
    Chen Z, Fan W, Xiong Z, Zhang P, Luo L. Visual data security and management for smart cities. Frontiers of Computer Science in China, 2010, 4(3): 386–393CrossRefGoogle Scholar
  13. 13.
    Xiong Z, Luo W, Chen L, Ni L M. Data vitalization: a new paradigm for large-scale dataset analysis. In: Proceedings of the 16th IEEE International Conference on Parallel and Distributed Systems. 2010, 251–258Google Scholar
  14. 14.
    Fan W, Chen Z, Chen M, Luo L, Xiong Z. Reversible data hiding with context modeling, generalized expansion and boundary map. Multimedia Tools and Applications (in Press)Google Scholar
  15. 15.
    Luo L, Chen Z, Chen M, Zeng X, Xiong Z. Reversible image watermarking using interpolation technique. IEEE Transactions on Information Forensics and Security, 2010, 5(1): 187–193CrossRefGoogle Scholar
  16. 16.
    Chen M, Chen Z, Zeng X, Xiong Z. Reversible data hiding using additive predictionerror expansion. In: Proceedings of the 11th ACMWorkshop on Multimedia and Security. 2009, 19–24Google Scholar
  17. 17.
    Petitcolas F A P, Anderson R J, Kuhn M G. Information hiding-a survey. Proceedings of the IEEE, 1999, 87(7): 1062–1078CrossRefGoogle Scholar
  18. 18.
    Moulin P, O’sullivan J A. Information-theoreticanalysis of information hiding. IEEE Transactions on Information Theory, 2003, 49(3): 563–593MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Conner M. Sensors empower the “Internet of things”. EDN, 2010, 55(10): 32–38Google Scholar
  20. 20.
  21. 21.
    W3C. W3C semantic web frequently asked questions.
  22. 22.
    The SemanticWeb: An Introduction.
  23. 23.
    Tim B L, Hendler J, Lassila O. The semantic web. Scientific American Magazine, 2001Google Scholar
  24. 24.
    Wikipedia. Radio-frequency identification.
  25. 25.
    Cox I J, Kilian J, Leighton F T, Shamoon T. Secure spread spectrum watermarking for multimedia. IEEE Transactions on Image Processing, 1997, 6(12): 1673–1687CrossRefGoogle Scholar
  26. 26.
    Cayre F, Fontaine C, Furon T. Watermarking security: theory and practice. IEEE Transactions on Signal Processing, 2005, 53(10): 3976–3987MathSciNetCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Wei Fan
    • 1
  • Zhengyong Chen
    • 1
    • 2
    Email author
  • Zhang Xiong
    • 1
    • 2
  • Hui Chen
    • 3
  1. 1.State Key Laboratory of Software Development EnvironmentBeihang UniversityBeijingChina
  2. 2.Research Institute of Beihang University in ShengzhenShenzhenChina
  3. 3.Sino-French Engineering SchoolBeihang UniversityBeijingChina

Personalised recommendations