Skip to main content
Log in

Evaluation of subgraph searching algorithms detecting network motif in biological networks

  • Research Article
  • Published:
Frontiers of Computer Science in China Aims and scope Submit manuscript

Abstract

Despite several algorithms for searching subgraphs in motif detection presented in the literature, no effort has been done for characterizing their performance till now. This paper presents a methodology to evaluate the performance of three algorithms: edge sampling algorithm (ESA), enumerate subgraphs (ESU) and randomly enumerate subgraphs (RAND-ESU). A series of experiments are performed to test sampling speed and sampling quality. The results show that RAND-ESU is more efficient and has less computational cost than other algorithms for large-size motif detection, and ESU has its own advantage in small-size motif detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Teichmann S A, Babu M M. Gene regulatory network growth by duplication. Nature Genetics, 2004, 36(5): 492–496

    Article  Google Scholar 

  2. Milo R, Shen-Orr S, Itzkovitz S, et al. Network motifs: simple building blocks of complex networks. Science, 2002, 298(5594): 824–827

    Article  Google Scholar 

  3. Yeger-Lotem E, Sattath S, Kashtan N, et al. Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. In: Proceedings of the National Academy of Sciences, 2004, 101(16): 5934–5939

    Article  Google Scholar 

  4. Shen-Orr S, Milo R, Mangan S, et al. Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genetics, 2002, 31(1): 64–68

    Article  Google Scholar 

  5. Schreiber F, Schwbbermeyer H. Towards motif detection in networks: frequency concepts and flexible search. In: Proceedings of Intl. Wsh. Network Tools and Applications in Biology, 2004, 91–102

  6. Lee T I, Nical J R, Francois R, et al. Transcriptional regulatory networks in saccharomyces cerevisiae. Science, 2002, 298(5594): 799–804

    Article  Google Scholar 

  7. Mangan S, Alon U. Structure and function of the feed-forward loop network motif. In: Proceedings of the National Academy of Sciences, 2003, 100(21): 11980–11985

    Article  Google Scholar 

  8. Inokuchi A, Washio T, Motoda H. An apriori-based algorithm for mining frequent substructures from graph data. In: Proceedings of European Conference on Principles of Data Mining and Knowledge Discovery, 2000, 13–23

  9. Yan X, Han J. gSpan: graph-based substructure pattern mining. In: Proceedings of IEEE International Conference on Data Mining, 2002, 721–723

  10. Kashtan N, Itzkovitz S, Milo R, et al. Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs. Bioinformatics, 2004, 20(11): 1746–1758

    Article  Google Scholar 

  11. Wernicke S. Efficient detection of network motifs. IEEE/ACM Transactions on Computational Biology Bioinformatics, 2006, 3(4): 347–359

    Article  Google Scholar 

  12. Itzkovitz S, Milo R, Kastan N, et al. Subgraphs in random networks. Physical Review E, 2003, 68, 06127

    Article  Google Scholar 

  13. Johnson D B. Finding all the elementary circuits of a directed graph. SIAM Journal on Computing, 1975, 4: 77–84

    Article  MATH  MathSciNet  Google Scholar 

  14. Alon N, Yuster R, Zwick U. Finding and counting given length cycles. Algorithmica, 1997, 17: 209–223

    Article  MATH  MathSciNet  Google Scholar 

  15. Akkoyunlu E. The enumeration of maximal cliques of large graphs. SIAM Journal on Computing, 1973, 2: 1–6

    Article  MATH  MathSciNet  Google Scholar 

  16. Nesetril J, Poljak S. On the complexity of the subgraph problem. Commentationes Mathematicae Universitatis Carolinae, 1985, 26: 415–419

    MATH  MathSciNet  Google Scholar 

  17. Dyer M, Frieze A, Jerrum M. Approximately counting Hamilton cycles in dense graphs. In: Proceedings of the 5th Annual ACM/SIAM Symposium on Discrete Algorithms, 1994, 336–343

  18. Frieze A, Kannan R. Quick approximation to matrices and applications. Combinatorica, 1999, 19(2): 175–220

    Article  MATH  MathSciNet  Google Scholar 

  19. Jerrum M. Counting, Sampling and Integrating: Algorithms and Complexity. Birkhauser Verlag, 2003

  20. Itzhack R, Mogilevski Y, Louzoun Y. An optimal algorithm for counting network motifs. Physica A, 2007, 381: 482–490

    Article  Google Scholar 

  21. Wernicke S, Rasche F. FANMOD: a tool for fast network motif detection. Bioinformatics, 2006, 22(9): 1152–1153

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, J., Gao, L. & Qin, G. Evaluation of subgraph searching algorithms detecting network motif in biological networks. Front. Comput. Sci. China 3, 412–416 (2009). https://doi.org/10.1007/s11704-009-0045-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11704-009-0045-z

Keywords

Navigation