Skip to main content
Log in

Molecular characterization, transcriptional regulation and function analysis of nitrate transporters in plants

  • Review
  • Published:
Frontiers of Agriculture in China

Abstract

Nitrogen (N) is one of the most important inorganic nutrients in plants, and its less availability is an important limiting factor for plant growth in most agricultural systems. In this essay, the following aspects on nitrate transporters (NRT) in plants, such as the uptake features of nitrate (NO 3 ) mediated by roots, molecular characterization of NRTs, expression patterns and transcription regulation mechanisms of NRT genes, and functions of NRTs in plants, have been reviewed. Further studies of the molecular characterization, expression patterns, transcriptional regulation mechanisms, and functions of plant NRTs will provide a more detailed insight to understand the molecular mechanism of nitrate intake and nitrate transportation in plants. In the meantime, the researches on plant NRTs have potential roles for the improvement of nitrogen use efficiency (NUE) in crop production, as well as for the promotion of sustainable development in the agricultural ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agüera E, Haba P, Fontes A G, Maldonado J M (1990). Nitrate and nitrite uptake and reduction by intact sunflower plants. Planta, 182: 149–154

    Article  Google Scholar 

  • Alboresi A, Gestin C, Leydecker M T, Bedu M, Meyer C, Truong H N (2005). Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant Cell Environ, 28(4): 500–512

    Article  PubMed  CAS  Google Scholar 

  • Almagro A, Lin S H, Tsay Y F (2008). Characterization of the Arabidopsis nitrate transporter NRT1.6 reveals a role of nitrate in early embryo development. Plant Cell, 20(12): 3289–3299

    Article  PubMed  CAS  Google Scholar 

  • Araki R, Hasegawa H (2006). Expression of rice (Oryza sativa L.) genes involved in high-affinity nitrate transport during the period of nitrate induction. Breed Sci, 56(3): 295–302

    Article  CAS  Google Scholar 

  • Behl R, Tischner R, Raschke K (1988). Induction of a high-capacity nitrate-uptake mechanism in barley roots prompted by nitrate uptake through a constitutive low-capacity mechanism. Planta, 176(2): 235–240

    Article  CAS  Google Scholar 

  • Chiu C C, Lin C S, Hsia A P, Su R C, Lin H L, Tsay Y F (2004). Mutation of a nitrate transporter, AtNRT1:4, results in a reduced petiole nitrate content and altered leaf development. Plant Cell Physiol, 45(9): 1139–1148

    Article  PubMed  CAS  Google Scholar 

  • Chopin F, Orsel M, Dorbe M F, Chardon F, Truong H N, Miller A J, Krapp A, Daniel-Vedele F (2007). The Arabidopsis ATNRT2.7 nitrate transporter controls nitrate content in seeds. Plant Cell, 19(5): 1590–1602

    Article  PubMed  CAS  Google Scholar 

  • Fan S C, Lin C S, Hsu P K, Lin S H, Tsay Y F (2009). Arabidopsis nitrate transporter NRT1.7, expressed in phloem, is responsible for sourceto-sink remobilization of nitrate. Plant Cell, 21: 2750–2761.

    Article  PubMed  CAS  Google Scholar 

  • Filleur S, Daniel-Vedele F (1999). Expression analysis of a high-affinity nitrate transporter isolated from Arabidopsis thaliana by differential display. Planta, 207(3): 461–469

    Article  PubMed  CAS  Google Scholar 

  • Filleur S, Dorbe M F, Cerezo M, Orsel M, Granier F, Gojon A, Daniel-Vedele F (2001). An Arabidopsis T-DNA mutant affected in Nrt2 genes is impaired in nitrate uptake. FEBS Lett, 489(2–3): 220–224

    Article  PubMed  CAS  Google Scholar 

  • Filleur S, Walch-Liu P, Gan Y, Forde B G (2005). Nitrate and glutamate sensing by plant roots. Biochem Soc Trans, 33(1): 283–286

    Article  PubMed  CAS  Google Scholar 

  • Forde B G (2000). Nitrate transporters in plants: structure, function and regulation. Biochim Biophys Acta, 1465(1–2): 219–235

    PubMed  CAS  Google Scholar 

  • Forde B G (2002). Local and long-range signaling pathways regulating plant responses to nitrate. Annu Rev Plant Biol, 53(1): 203–224

    Article  PubMed  CAS  Google Scholar 

  • Forde B G, Walch-Liu P (2009). Nitrate and glutamate as environmental cues for behavioural responses in plant roots. Plant Cell Environ, 32(6): 682–693

    Article  PubMed  CAS  Google Scholar 

  • Fritz C, Palacios-Rojas N, Feil R, Stitt M (2006). Regulation of secondary metabolism by the carbon-nitrogen status in tobacco: nitrate inhibits large sectors of phenylpropanoid metabolism. Plant J, 46(4): 533–548

    Article  PubMed  CAS  Google Scholar 

  • Galván A, Fernández E (2001). Eukaryotic nitrate and nitrite transporters. Cell Mol Life Sci, 58(2): 225–233

    Article  PubMed  Google Scholar 

  • Gan Y, Filleur S, Rahman A, Gotensparre S, Forde B G (2005). Nutritional regulation of ANR1 and other root-expressed MADS-box genes in Arabidopsis thaliana. Planta, 222(4): 730–742

    Article  PubMed  CAS  Google Scholar 

  • Glass A D M, Siddiqi M Y (1995). Nitrogen absorption by plants roots. In Srivastava H S, Singh R P, eds. Nitrogen Nutrition in Higher Plants. New Delhi: Associated Publishing, 21–56

    Google Scholar 

  • González E, Solano R, Rubio V, Leyva A, Paz-Ares J (2005). PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 is a plant-specific SEC12-related protein that enables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis. Plant Cell, 17(12): 3500–3512

    Article  PubMed  Google Scholar 

  • Good A G, Shrawat A K, Muench D G (2004). Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci, 9(12): 597–605

    Article  PubMed  CAS  Google Scholar 

  • Guo F Q, Wang R, Chen M, Crawford N M (2001). The Arabidopsis dual-affinity nitrate transporter gene AtNRT1.1 (CHL1) is activated and functions in nascent organ development during vegetative and reproductive growth. Plant Cell, 13(8): 1761–1777

    Article  PubMed  CAS  Google Scholar 

  • Guo F Q, Young J, Crawford N M (2003). The nitrate transporter AtNRT1.1 (CHL1) functions in stomatal opening and contributes to drought susceptibility in Arabidopsis. Plant Cell, 15(1): 107–117

    Article  PubMed  CAS  Google Scholar 

  • Gutiérrez R A, Gifford M L, Poultney C, Wang R, Shasha D E, Coruzzi G M, Crawford N M (2007a). Insights into the genomic nitrate response using genetics and the Sungear Software System. J Exp Bot, 58(9): 2359–2367

    Article  PubMed  Google Scholar 

  • Gutiérrez R A, Lejay L V, Dean A, Chiaromonte F, Shasha D E, Coruzzi G M (2007b). Qualitative network models and genome-wide expression data define carbon/nitrogen-responsive molecular machines in Arabidopsis. Genome Biol, 8(1): R7.1–7.13

    Article  Google Scholar 

  • Gutiérrez R A, Shasha D E, Coruzzi G M (2005). Systems biology for the virtual plant. Plant Physiol, 138(2): 550–554

    Article  PubMed  Google Scholar 

  • Huang N C, Liu K H, Lo H J, Tsay Y F (1999). Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake. Plant Cell, 11(8): 1381–1392

    Article  PubMed  CAS  Google Scholar 

  • Kawachi T, Sunaga Y, Ebato M, Hatanaka T, Harada H (2006). Repression of nitrate uptake by replacement of Asp105 by asparagines in AtNRT3.1 in Arabidopsis thaliana L. Plant Cell Physiol, 47(10): 1437–1441

    Article  PubMed  CAS  Google Scholar 

  • Krapp A, Fraisier V, Scheible W R, Quesada A, Gojon A, Stitt M, Caboche M, Daniel-Vedele F (1998). Expression studies of Nrt2:1Np, a putative high affinity nitrate transporter: evidence for its role in nitrate uptake. Plant J, 14(6): 723–731

    Article  CAS  Google Scholar 

  • Krouk G, Tillard P, Gojon A (2006). Regulation of the high-affinity NO 3 uptake system by NRT1.1-mediated NO 3 demand signaling in Arabidopsis. Plant Physiol, 142(3): 1075–1086

    Article  PubMed  CAS  Google Scholar 

  • Lejay L, Gansel X, Cerezo M, Tillard P, Müller C, Krapp A, von Wirén N, Daniel-Vedele F, Gojon A (2003). Regulation of root ion transporters by photosynthesis: functional importance and relation with hexokinase. Plant Cell, 15(9): 2218–2232

    Article  PubMed  CAS  Google Scholar 

  • Leydecker M T, Camus I, Daniel-Vedele F, Truong H N (2000). Screening for Arabidopsis mutants affected in the Nii gene expression using the Gus reporter gene. Physiologia Plantarum, 108(2): 161–170

    Article  CAS  Google Scholar 

  • Li W, Wang Y, Okamoto M, Crawford N M, Siddiqi M Y, Glass A D M (2006). Dissection of the AtNRT2.1:AtNRT2.2 inducible high-affinity nitrate transporter gene cluster. Plant Physiol, 143(1): 425–433

    Article  PubMed  Google Scholar 

  • Liu K H, Tsay Y F (2003). Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation. EMBO J, 22(5): 1005–1013

    Article  PubMed  CAS  Google Scholar 

  • Muños S, Cazettes C, Fizames C, Gaymard F, Tillard P, Lepetit M, Lejay L, Gojon A (2004). Transcript profiling in the chl1-5 mutant of Arabidopsis reveals a role of the nitrate transporter NRT1.1 in the regulation of another nitrate transporter, NRT2.1. Plant Cell, 16(9): 2433–2447

    Article  PubMed  Google Scholar 

  • Navarro F J, Machín F, Martín Y, Siverio J M (2006). Down-regulation of eukaryotic nitrate transporter by nitrogen-dependent ubiquitinylation. J Biol Chem, 281(19): 13268–13274

    Article  PubMed  CAS  Google Scholar 

  • Nazoa P, Vidmar J J, Tranbarger T J, Mouline K, Damiani I, Tillard P, Zhuo D, Glass A D M, Touraine B (2003). Regulation of the nitrate transporter gene AtNRT2.1 in Arabidopsis thaliana: responses to nitrate, amino acids and developmental stage. Plant Mol Biol, 52(3): 689–703

    Article  PubMed  CAS  Google Scholar 

  • Okamoto M, Kumar A, Li W, Wang Y, Siddiqi M Y, Crawford N M, Glass A D M (2006). High-affinity nitrate transport in roots of Arabidopsis depends on expression of the NAR2-like gene AtNRT3.1. Plant Physiol, 140(3): 1036–1046

    Article  PubMed  CAS  Google Scholar 

  • Okamoto M, Vidmar J J, Glass A D M (2003). Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana: responses to nitrate provision. Plant Cell Physiol, 44(3): 304–317

    Article  PubMed  CAS  Google Scholar 

  • Orsel M, Chopin F, Leleu O, Smith S J, Krapp A, Daniel-Vedele F, Miller A J (2006). Characterization of a two-component high-affinity nitrate uptake system in Arabidopsis. Physiology and protein-protein interaction. Plant Physiol, 142(3): 1304–1317

    Article  PubMed  CAS  Google Scholar 

  • Orsel M, Chopin F, Leleu O, Smith S J, Krapp A, Daniel-Vedele F, Miller A J (2007). Nitrate signaling and the two component high affinity uptake system in Arabidopsis. Plant Signal Behav, 2(4): 260–262

    Article  PubMed  Google Scholar 

  • Orsel M, Eulenburg K, Krapp A, Daniel-Vedele F (2004). Disruption of the nitrate transporter genes AtNRT2.1 and AtNRT2.2 restricts growth at low external nitrate concentration. Planta, 219(4): 714–721

    Article  PubMed  CAS  Google Scholar 

  • Pao S S, Paulsen I T, Saier M H Jr (1998). Major facilitator superfamily. Microbiol Mol Biol Rev, 62(1): 1–34

    PubMed  CAS  Google Scholar 

  • Paulsen I T, Skurray R A (1994). The POT family of transport proteins. Trends Biochem Sci, 19(10): 404

    Article  PubMed  CAS  Google Scholar 

  • Peoples M B, Freney J R, Mosier A R (1995). Minimizing gaseous losses of nitrogen. In Bacon P E, ed. Nitrogen Fertilizer in the Environment. New York: Marcel Dekker, 565–606

    Google Scholar 

  • Quesada A, Galván A, Fernández E (1994). Identification of nitrate transporter genes in Chlamydomonas reinhardtii. Plant J, 5(3): 407–419

    Article  PubMed  CAS  Google Scholar 

  • Scheible W R, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardi M K, Stitt M (2004). Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol, 136(1): 2483–2499

    Article  PubMed  CAS  Google Scholar 

  • Stitt M, Müller C, Matt P, Gibon Y, Carillo P, Morcuende R, Scheible W R, Krapp A (2002). Steps towards an integrated view of nitrogen metabolism. J Exp Bot, 53(370): 959–970

    Article  PubMed  CAS  Google Scholar 

  • Tillard P, Passama L, Gojon A (1998). Are phloem amino acids involved in the shoot to root control of NO 3 uptake in Ricinus communis plants? J Exp Bot, 49(325): 1371–1379

    Article  CAS  Google Scholar 

  • Tong Y, Zhou J J, Li Z, Miller A J (2005). A two-component high-affinity nitrate uptake system in barley. Plant J, 41(3): 442–450

    Article  PubMed  CAS  Google Scholar 

  • Touraine B, Glass A D M (1997). NO 3 and CLO 3 fluxes in the chl1-5 mutant of Arabidopsis thaliana. Does the CHL1-5 gene encode a low-affinity NO 3 transporter? Plant Physiol, 114(1): 137–144

    Article  PubMed  CAS  Google Scholar 

  • Trueman L J, Richardson A, Forde B.G (1996). Molecular cloning of higher plant homologues of the high-affinity nitrate transporters of Chlamydomonas reinhardtii and Aspergillus nidulans. Gene, 175(1–2): 223–231

    Article  PubMed  CAS  Google Scholar 

  • Tsay Y F, Chiu C C, Tsai C B, Ho C H, Hsu P K (2007). Nitrate transporters and peptide transporters. FEBS Lett, 581(12): 2290–2300

    Article  PubMed  CAS  Google Scholar 

  • Tsay Y F, Schroeder J I, Feldmann K A, Crawford N M (1993). The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrateinducible nitrate transporter. Cell, 72(5): 705–713

    Article  PubMed  CAS  Google Scholar 

  • Unkles S E, Hawker K L, Grieve C, Campbell E I, Montague P, Kinghorn J R (1991). crnA encodes a nitrate transporter in Aspergillus nidulans. Proc Natl Acad Sci USA, 88(1): 204–208

    Article  PubMed  CAS  Google Scholar 

  • Vidmar J J, Zhuo D, Siddiqi M Y, Schjoerring J K, Touraine B, Glass A D M (2000). Regulation of high-affinity nitrate transporter genes and high-affinity nitrate influx by nitrogen pools in roots of barley. Plant Physiol, 123(1): 307–318

    Article  PubMed  CAS  Google Scholar 

  • Walch-Liu P, Filleur S, Gan Y, Forde B G (2005). Signaling mechanisms integrating root and shoot responses to changes in the nitrogen supply. Photosynth Res, 83: 239–250.

    Article  PubMed  CAS  Google Scholar 

  • Walch-Liu P, Ivanov I I, Filleur S, Gan Y, Remans T, Forde B G (2006). Nitrogen regulation of root branching. Ann Bot (Lond), 97(5): 875–881

    Article  CAS  Google Scholar 

  • Wang R, Guegler K, LaBrie S T, Crawford N M (2000). Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate. Plant Cell, 12(8): 1491–1509

    Article  PubMed  CAS  Google Scholar 

  • Wang R, Okamoto M, Xing X, Crawford N M (2003). Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism. Plant Physiol, 132(2): 556–567

    Article  PubMed  CAS  Google Scholar 

  • Wang R, Tischner R, Gutiérrez R A, Hoffman M, Xing X, Chen M, Coruzzi G, Crawford N M (2004). Genomic analysis of the nitrate response using a nitrate reductase-null mutant of Arabidopsis. Plant Physiol, 136(1): 2512–2522

    Article  PubMed  CAS  Google Scholar 

  • Wang R, Xing X, Crawford N (2007). Nitrite acts as a transcriptome signal at micromolar concentrations in Arabidopsis roots. Plant Physiol, 145(4): 1735–1745

    Article  PubMed  CAS  Google Scholar 

  • Yanagisawa S, Akiyama A, Kisaka H, Uchimiya H, Miwa T (2004). Metabolic engineering with Dof1 transcription factor in plants: Improved nitrogen assimilation and growth under low-nitrogen conditions. Proc Natl Acad Sci USA, 101(20): 7833–7838

    Article  PubMed  CAS  Google Scholar 

  • Zhang H M, Forde B G (1998). An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science, 279(5349): 407–409

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Forde B G (2000). Regulation of Arabidopsis root development by nitrate availability. J Exp Bot, 51(342): 51–59

    Article  PubMed  CAS  Google Scholar 

  • Zhou J J, Fernández E, Galván A, Miller A J (2000a). A high affinity nitrate transport system from Chlamydomonas requires two gene products. FEBS Lett, 466(2–3): 225–227

    Article  PubMed  CAS  Google Scholar 

  • Zhuo D, Okamoto M, Vidmar J J, Glass A D M (1999). Regulation of a putative high-affinity nitrate transporter (Nrt2;1At) in roots of Arabidopsis thaliana. Plant J, 17(5): 563–568

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Xiao.

About this article

Cite this article

Guo, C., Chang, W., Gu, J. et al. Molecular characterization, transcriptional regulation and function analysis of nitrate transporters in plants. Front. Agric. China 5, 291–298 (2011). https://doi.org/10.1007/s11703-011-1067-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11703-011-1067-5

Keywords

Navigation