Skip to main content
Log in

Coordinate induction of antioxidant defense and glyoxalase system by exogenous proline and glycinebetaine is correlated with salt tolerance in mung bean

  • Research Article
  • Published:
Frontiers of Agriculture in China

Abstract

The purpose of this study was to assess the synergistic effects of exogenously applied proline and glycinebetaine (betaine) in antioxidant defense and methylglyoxal (MG) detoxification system in mung bean seedlings subjected to salt stress (200 mmol·L−1 NaCl, 48 h). Seven-day-old mung bean seedlings were exposed to salt stress after pre-treatment with proline or betaine. Salt stress caused a sharp increase in reduced glutathione (GSH) and oxidized glutathione (GSSG) content in leaves, while the GSH/GSSG ratio and ascorbate (AsA) content decreased significantly. The glutathione reductase (GR), glutathione peroxidase (GPX), glutathione S-transferase (GST) and glyoxalase II (Gly II) activities were increased in response to salt stress, while the monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT) and glyoxalase I (Gly I) activities sharply decreased with an associated increase in hydrogen peroxide (H2O2) and lipid peroxidation level (MDA). Proline or betaine pre-treatment had little influence on nonenzymatic and enzymatic components as compared to those of the untreated control. However, proline or betaine pre-treated salt-stressed seedlings showed an increase in AsA, GSH content, GSH/GSSG ratio and maintained higher activities of APX, DHAR, GR, GST, GPX, CAT, Gly I and Gly II involved in ROS and MG detoxification system as compared to those of the untreated control and mostly also salt-stressed plants with a simultaneous decrease in GSSG content, H2O2 and MDA level. These results together with our previous results suggest that coordinate induction of antioxidant defense and glyoxalase system by proline and betaine rendered the plants tolerant to salinity-induced oxidative stress in a synergistic fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Aghaei K, Ehsanpour A A, Komatsu S (2009). Potato responds to salt stress by increased activity of antioxidant enzymes. J Integr Plant Biol, 51(12): 1095–1103

    Article  PubMed  CAS  Google Scholar 

  • Ahmad P, Jaleel C A, Sharma R (2010a). Antioxidant defense system, lipid Peroxidation, proline-metabolizing enzymes, and biochemical activities in two Morus alba genotypes subjected to NaCl stress. Russ J Plant Physiol, 57(4): 509–517

    Article  CAS  Google Scholar 

  • Ahmad R, Kim Y H, Kim M D, Kwon S Y, Cho K, Lee H S, Kwak S S (2010b). Simultaneous expression of choline oxidase, superoxide dismutase and ascorbate peroxidase in potato plant chloroplasts provides synergistically enhanced protection against various abiotic stresses. Physiol Plant, 138(4): 520–533

    Article  PubMed  CAS  Google Scholar 

  • Apel K, Hirt H (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol, 55(1): 373–399

    Article  PubMed  CAS  Google Scholar 

  • Aravind P A, Prasad M N (2005). Modulation of cadmium-induced oxidative stress in Ceratophyllum demersum by zinc involves ascorbate-glutathione cycle and glutathione metabolism. Plant Physiol Biochem, 43(2): 107–116

    Article  PubMed  CAS  Google Scholar 

  • Asada K (1999). The water-water cycle in chloroplasts: Scavenging of active oxygen and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol, 50(1): 601–639

    Article  PubMed  CAS  Google Scholar 

  • Athar H R, Khan A, Ashraf M (2008). Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Environ Exp Bot, 63(1–3): 224–231

    Article  CAS  Google Scholar 

  • Ben Ahmed C, Ben Rouina B, Sensoy S, Boukhriss M, Ben Abdullah F (2010). Exogenous proline effects on photosynthetic performance and antioxidant defense system of young olive tree. J Agric Food Chem, 58(7): 4216–4222

    Article  PubMed  CAS  Google Scholar 

  • Bradford M M (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72(1–2): 248–254

    Article  PubMed  CAS  Google Scholar 

  • Creighton D J, Migliorini M, Pourmotabbed T, Guha M K (1988). Optimization of efficiency in the glyoxalase pathway. Biochemistry, 27(19): 7376–7384

    Article  PubMed  CAS  Google Scholar 

  • Dalton D A, Boniface C, Turner Z, Lindahl A, Kim H J, Jelinek L, Govindarajulu M, Finger R E, Taylor C G (2009). Physiological roles of glutathione S-transferases in soybean root nodules. Plant Physiol, 150(1): 521–530

    Article  PubMed  CAS  Google Scholar 

  • Dat J, Vandenabeele S, Vranová E, Van Montagu M, Inzé D, Van Breusegem F (2000). Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci, 57(5): 779–795

    Article  PubMed  CAS  Google Scholar 

  • De Gara L, Paciolla C, De Tullio M C, Motto M, Arrigioni O (2000). Ascorbate-dependent hydrogen peroxide detoxification and ascorbate regeneration during germination of a highly productive maize hybrid: evidence of an improved detoxification mechanism against reactive oxygen species. Physiol Plant, 109(1): 7–13

    Article  Google Scholar 

  • Demiral T, Türkan I (2004). Does exogenous glycinebetaine affect antioxidative system of rice seedlings under NaCl treatment? J Plant Physiol, 161(10): 1089–1100

    Article  PubMed  CAS  Google Scholar 

  • Desingh R, Kanagaraj G (2007). Influence of salinity stress on photosynthesis and antioxidative systems in two cotton varieties. Gen Appl Plant Physiol, 33: 221–234

    CAS  Google Scholar 

  • El-Shabrawi H, Kumar B, Kaul T, Reddy M K, Singla-Pareek S L, Sopory S K (2010). Redox homeostasis, antioxidant defense, and methylglyoxal detoxification as markers for salt tolerance in Pokkali rice. Protoplasma, 245(1–4): 85–96

    Article  PubMed  CAS  Google Scholar 

  • Eltayeb A E, Kawano N, Badawi G, Kaminaka H, Sanekata T, Morishima I, Shibahara T, Inanaga S, Tanaka K (2006). Enhanced tolerance to ozone and drought stresses in transgenic tobacco overexpressing dehydroascorbate reductase in cytosol. Physiol Plant, 127(1): 57–65

    Article  CAS  Google Scholar 

  • Eltayeb A E, Kawano N, Badawi G H, Kaminaka H, Sanekata T, Shibahara T, Inanaga S, Tanaka K (2007). Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta, 225(5): 1255–1264

    Article  PubMed  CAS  Google Scholar 

  • Eshdat Y, Holland D, Faltin Z, Ben-Hayyim G (1997). Plant glutathione peroxidases. Physiol Plant, 100(2): 234–240

    Article  CAS  Google Scholar 

  • Fujita M, Hossain M Z (2003). Modulation of pumpkin glutathione S-transferases by aldehydes and related compounds. Plant Cell Physiol, 44(5): 481–490

    Article  PubMed  CAS  Google Scholar 

  • Gueta-Dahan Y, Yaniv Z, Zilinskas B A, Ben-Hayyim G (1997). Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in citrus. Planta, 203(4): 460–469

    Article  PubMed  CAS  Google Scholar 

  • Halusková L, Valentovicová K, Huttová J, Mistrík I, Tamás L (2009). Effect of abiotic stresses on glutathione peroxidase and glutathione S-transferase activity in barley root tips. Plant Physiol Biochem, 47(11–12): 1069–1074

    Article  PubMed  Google Scholar 

  • Hare P D, Cress W A, van Staden J (1998). Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ, 21(6): 535–553

    Article  CAS  Google Scholar 

  • Heath R L, Packer L (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys, 125(1): 189–198

    Article  PubMed  CAS  Google Scholar 

  • Hernández J A, Jimenez A, Millineaus P, Sevilla F (2000). Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defenses. Plant Cell Environ, 23(8): 853–862

    Article  Google Scholar 

  • Hoque M A, BanuM N A, Nakamura Y, Shimoishi Y, Murata Y (2008). Proline and glycinebetaine enhance antioxidant defense and methylglyoxal detoxification systems and reduce NaCl-induced damage in cultured tobacco cells. J Plant Physiol, 165(8): 813–824

    Article  PubMed  CAS  Google Scholar 

  • Hoque M A, Banu M N A, Okuma E, Amako K, Nakamura Y, Shimoishi Y, Murata Y (2007). Exogenous proline and glycinebetaine ingresses NaCl-induced ascorbate-glutathione cycle enzyme activities and proline improves salt tolerance more than glycinebetaine in tobacco Bright yellow-2 suspension-cultured cells. J Plant Physiol, 164(11): 553–561

    Article  PubMed  CAS  Google Scholar 

  • Hossain M A, Fujita M (2009). Purification of glyoxalase I from onion bulbs and molecular cloning of its cDNA. Biosci Biotechnol Biochem, 73(9): 2007–2013

    Article  PubMed  CAS  Google Scholar 

  • Hossain M A, Fujita M (2010). Evidence for a role of exogenous glycinebetaine and proline in antioxidant defense and methylglyoxal detoxification systems in mung bean seedlings under salt stress. Physiol Mol Biol Plants, 16(1): 19–29

    Article  CAS  Google Scholar 

  • Hossain M A, Hasanuzzaman M, Fujita M (2010). Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress. Physiol Mol Biol Plants (in press)

  • Hossain M A, Hossain M Z, Fujita M (2009). Stress-induced changes of methylglyoxal level and glyoxalase I activity in pumpkin seedlings and cDNA cloning of glyoxalase I gene. Aust J Crop Sci, 3(2): 53–64

    CAS  Google Scholar 

  • Hossain M A, Nakano Y, Asada K (1984). Monodehydroascorbate reductase in spinach chloroplasts and its participation in the regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol, 25(3): 385–395

    CAS  Google Scholar 

  • Huang C, He W, Guo J, Chang X, Su P, Zhang L (2005). Increased sensitivity to salt stress in an ascorbate-deficient Arabidopsis mutant. J Exp Bot, 56(422): 3041–3049

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Bie Z, Liu Z, Zhen A, Wang W (2009). Protective role of proline against salt stress is partially related to the improvement of water status and peroxidase enzyme activity in cucumber. Soil Sci Plant Nutr, 55(5): 698–704

    Article  CAS  Google Scholar 

  • Jain M, Choudhary D, Kale R K, Bhalla-Sarin N (2002). Salt- and glyphosate-induced increase in glyoxalase I activity in cell lines of groundnut (Arachis hypogaea). Physiol Plant, 114(4): 499–505

    Article  PubMed  CAS  Google Scholar 

  • Ji W, Zhu Y, Li Y, Yang L, Zhao X, Cai H, Bai X (2010). Over-expression of a glutathione S-transferase gene, GsGST, from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco. Biotechnol Lett, 32(8): 1173–1179

    Article  PubMed  CAS  Google Scholar 

  • Khan M A, Panda S K (2008). Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaCl-salinity stress. Acta Physiol Plant, 30(1): 81–89

    Article  CAS  Google Scholar 

  • Khan N A, Syeed S, Masood A, Nazar R, Iqbal N (2010). Application of salicylic acid increases contents of nutrients and antioxidative metabolism in mungbean and alleviates adverse effects of salinity. Int J Plant Biol, 1: 1–8

    CAS  Google Scholar 

  • Khedr A H A, Abbas M A, Wahid A A A, Quick W P, Abogadallah G M (2003). Proline induces the expression of salt-stress-responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt-stress. J Exp Bot, 54(392): 2553–2562

    Article  PubMed  CAS  Google Scholar 

  • Kocsy G, Laurie R, Szalai G, Szilágyi V, Simon-Sarkadi L, Galiba G, de Ronde J A (2005). Genetic manipulation of proline levels affects antioxidants in soybean subjected to simultaneous drought and heat stresses. Physiol Plant, 124(2): 227–235

    Article  CAS  Google Scholar 

  • Kumar V, Yadav S K (2009). Proline and betaine provide protection to antioxidant and methylglyoxal detoxification systems during cold stress and Camellia sinensis (L.) O. Kuntze. Acta Physiol Plant, 31(2): 261–269

    Article  CAS  Google Scholar 

  • Lin S H, Liu Z J, Xu P L, Fang Y Y, Bai J G (2010). Paraquat pretreatment increases activities of antioxidant enzymes and reduces lipid peroxidation in salt-stressed cucumber leaves. Acta Physiol Plant (in press)

  • Mallick N, Mohn F H (2000). Reactive oxygen species: response of algal cells. J Plant Physiol, 157(2): 183–193

    CAS  Google Scholar 

  • Martins A M T B S, Cordeiro C A A, Ponces Freire A M (2001). In situ analysis of methylglyoxal metabolism in Saccharomyces cerevisiae. FEBS Lett, 499(1–2): 41–44

    Article  PubMed  CAS  Google Scholar 

  • May M J, Leaver C J (1993). Oxidative stimulation of glutathione synthesis in Arabidopsis thaliana suspension cultures. Plant Physiol, 103(2): 621–627

    PubMed  CAS  Google Scholar 

  • McNeil S D, Nuccio M L, Ziemak M J, Hanson A D (2001). Enhanced synthesis of choline and glycine betaine in transgenic tobacco plants that overexpress phosphoethanolamine N-methyltransferase. Proc Natl Acad Sci USA, 98(17): 10001–10005

    Article  PubMed  CAS  Google Scholar 

  • Meloni D A, Martinez C A (2010). Glycinebetaine improves salt tolerance in vinal (Prosopis ruscifolia Griesbach) seedlings. Braz J Plant Physiol, 21: 233–241

    Google Scholar 

  • Mittova V, Tal M, Volokita M, Guy M (2003a). Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant Cell Environ, 26(6): 845–856

    Article  PubMed  CAS  Google Scholar 

  • Mittova V, Theodoulou F L, Kiddle G, Gómez L, Volokita M, Tal M, Foyer C H, Guy M (2003b). Coordinate induction of glutathione biosynthesis and glutathione-metabolizing enzymes is correlated with salt tolerance in tomato. FEBS Lett, 554(3): 417–421

    Article  PubMed  CAS  Google Scholar 

  • Molinari H B C, Marur C J, Bespalhok J C, Kobayashi A K, Pileggi M, Pereira F P P, Vieira L G E (2004). Osmotic adjustment in transgenic citrus rootstock Carrizo citrange (Citrus sinensis Osb. × Poncirus trifoliate L. Raf.) overproducing proline. Plant Sci, 167(6): 1375–1381

    Article  CAS  Google Scholar 

  • Munns R (2005). Genes and salt tolerance: bringing them together. New Phytol, 167(3): 645–663

    Article  PubMed  CAS  Google Scholar 

  • Nakano Y, Asada K (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol, 22(5): 867–880

    CAS  Google Scholar 

  • Newaz K, Ashraf M (2010). Exogenous application of glycinebetaine modulates activities of antioxidants in maize plants subjected to salt stress. J Agron Crop Sci, 196(1): 28–37

    Article  Google Scholar 

  • Noctor G, Arisi A, Jouanin L, Kunert K J, Rennenberg H, Foyer C (1998). Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J Exp Bot, 49(321): 623–647

    Article  CAS  Google Scholar 

  • Noctor G, Foyer C H (1998). Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol, 49(1): 249–279

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Gomez L, Vanacker H, Foyer C H (2002). Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J Exp Bot, 53(372): 1283–1304

    Article  PubMed  CAS  Google Scholar 

  • Paradiso A, Berardino R, de Pinto M C, Sanità di Toppi L, Storelli M M, Tommasi F, De Gara L (2008). Increase in ascorbate-glutathione metabolism as local and precocious systemic responses induced by cadmium in durum wheat plants. Plant Cell Physiol, 49(3): 362–374

    Article  PubMed  CAS  Google Scholar 

  • Parida A K, Jha B (2010). Antioxidative defense potential to salinity in the euhalophyte Salicornia brachiata. J Plant Growth Regul, 29(2): 137–148

    Article  CAS  Google Scholar 

  • Pérez-López U, Robredo A, Lacuesta M, Sgherri C, Muñoz-Rueda A, Navari-Izzo F, Mena-Petite A (2009). The oxidative stress caused by salinity in two barley cultivars is mitigated by elevated CO2. Physiol Plant, 135(1): 29–42

    Article  PubMed  Google Scholar 

  • Potters G, Horemans N, Bellone S, Caubergs R J, Trost P, Guisez Y, Asard H (2004). Dehydroascorbate influences the plant cell cycle through a glutathione-independent reduction mechanism. Plant Physiol, 134(4): 1479–1487

    Article  PubMed  CAS  Google Scholar 

  • Ray S, Dutta S, Halder J, Ray M (1994). Inhibition of electron flow through complex I of the mitochondrial respiratory chain of Ehrlich ascites carcinoma cells by methylglyoxal. Biochem J, 303: 69–72

    PubMed  CAS  Google Scholar 

  • Raza H, Athar H R, Ashraf M, Hameed A (2007). Glycinebetaine-induced modulation of antioxidant enzymes activities and ion accumulation in two wheat cultivars differing in salt tolerance. Environ Exp Bot, 60(3): 368–376

    Article  CAS  Google Scholar 

  • Saha P, Chatterjee P, Biswas A K (2010). NaCl pretreatment alleviates salt stress by enhancement of antioxidant defense system and osmolyte accumulation in mungbean (Vigna radiata L. Wilczek). Indian J Exp Biol, 48(6): 593–600

    PubMed  CAS  Google Scholar 

  • Saxena M, Bisht R, Roy S D, Sopory S K, Bhalla-Sarin N (2005). Cloning and characterization of a mitochondrial glyoxalase II from Brassica juncea that is upregulated by NaCl, Zn, and ABA. Biochem Biophys Res Commun, 336(3): 813–819

    Article  PubMed  CAS  Google Scholar 

  • Secenji M, Hideg E, Bebes A, Györgyey J (2010). Transcriptional differences in gene families of the ascorbate-glutathione cycle in wheat during mild water deficit. Plant Cell Rep, 29(1): 37–50

    Article  PubMed  CAS  Google Scholar 

  • Sekmen A H, Türkan I, Takio S (2007). Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media. Physiol Plant, 131(3): 399–411

    Article  PubMed  CAS  Google Scholar 

  • Shalata A, Mittova V, Volokita M, Guy M, Tal M (2001). Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: The root antioxidative system. Physiol Plant, 112(4): 487–494

    Article  PubMed  CAS  Google Scholar 

  • Shalata A, Neumann P M (2001). Exogenous ascorbic acid (vitamin C) increases resistance to salt stress and reduces lipid peroxidation. J Exp Bot, 52(364): 2207–2211

    PubMed  CAS  Google Scholar 

  • Singla-Pareek S L, Reddy MK, Sopory S K, Sopory S K (2003). Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc Natl Acad Sci USA, 100(25): 14672–14677

    Article  PubMed  CAS  Google Scholar 

  • Singla-Pareek S L, Yadav S K, Pareek A, Reddy M K, Sopory S K (2006). Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils. Plant Physiol, 140(2): 613–623

    Article  PubMed  CAS  Google Scholar 

  • Singla-Pareek S L, Yadav S K, Pareek A, Reddy M K, Sopory S K (2008). Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. Transgenic Res, 17(2): 171–180

    Article  PubMed  CAS  Google Scholar 

  • Smirnoff N (2000). Ascorbic acid: metabolism and functions of a multi-facetted molecule. Curr Opin Plant Biol, 3(3): 229–235

    PubMed  CAS  Google Scholar 

  • Sobhanian H, Motamed N, Jazii F R, Nakamura T, Komatsu S (2010). Salt stress induced differential proteome and metabolome response in the shoots of Aeluropus lagopoides (Poaceae), a halophyte C4 plant. J Proteome Res, 9(6): 2882–2897

    Article  PubMed  CAS  Google Scholar 

  • Song X S, Hu W H, Mao W H, Ogweno J O, Zhou Y H, Yu J Q (2005). Response of ascorbate peroxidase isoenzymes and ascorbate regeneration system to abiotic stresses in Cucumis sativus L. Plant Physiol Biochem, 43(12): 1082–1088

    Article  PubMed  CAS  Google Scholar 

  • Sudhakar C L, Akshm A, Giridarakumar S (2001). Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Sci, 161(3): 613–619

    Article  CAS  Google Scholar 

  • Sumithra K, Jutur P P, Carmel B D, Reddy A R (2006). Salinity-induced changes in two cultivars of vigna rediata: responses of antioxidative and proline metabolism. Plant Growth Regul, 50(1): 11–22

    Article  CAS  Google Scholar 

  • Tanou G, Molassiotis A, Diamantidis G (2009). Induction of reactive oxygen species and necrotic death-like destruction in strawberry leaves by salinity. Environ Exp Bot, 65(2–3): 270–281

    Article  CAS  Google Scholar 

  • Thornalley P J (1990). The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochem J, 269(1): 1–11

    PubMed  CAS  Google Scholar 

  • Thornalley P J (1996). Pharmacology of methylglyoxal: formation, modification of proteins and nucleic acids, and enzymatic detoxification: a role in pathogenesis and antiproliferative chemotherapy. Gen Pharmacol, 27(4): 565–573

    PubMed  CAS  Google Scholar 

  • Veena, Reddy V S, Sopory S K (1999). Glyoxalase I from Brassica juncea: molecular cloning, regulation and its over-expression confer tolerance in transgenic tobacco under stress. The Plant J, 17: 385–395

    Article  CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218(1): 1–14

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Xiao Y, Chen W, Tang K, Zhang L (2010). Increased vitamin C content accompanied by an enhanced recycling pathway confers oxidative stress tolerance in Arabidopsis. J Integr Plant Biol, 52(4): 400–409

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Juurlink B H J (2002). Increased methylglyoxal and oxidative stress in hypertensive rat vascular smooth muscle cells. Hypertension, 39(3): 809–814

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Yin H X, Li X (2009). Protective effects of proline against cadmium toxicity in micropropagated hyperaccumulator, Solanum nigrum L. Plant Cell Rep, 28(2): 325–333

    Article  PubMed  CAS  Google Scholar 

  • Yadav S K, Singla-Pareek S L, Ray M, Reddy M K, Sopory S K (2005a). Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochem Biophys Res Commun, 337(1): 61–67

    Article  PubMed  CAS  Google Scholar 

  • Yadav S K, Singla-Pareek S L, Reddy M K, Sopory S K, Sopory S K (2005b). Transgenic tobacco plants overexpressing glyoxalase enzymes resist an increase in methylglyoxal and maintain higher reduced glutathione levels under salinity stress. FEBS Lett, 579(27): 6265–6271

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura K, Miyao K, Gaber A, Takeda T, Kanaboshi H, Miyasaka H, Shigeoka S (2004). Enhancement of stress tolerance in transgenic tobacco plants overexpressing Chlamydomonas glutathione peroxidase in chloroplasts or cytosol. Plant J, 37(1): 21–33

    Article  PubMed  CAS  Google Scholar 

  • Yu C W, Murphy T M, Sung W W, Lin C H (2002). H2O2 treatment induces glutathione accumulation and chilling tolerance in mung bean. Funct Plant Biol, 29(9): 1081–1087

    Article  CAS  Google Scholar 

  • Zhu J K (2002). Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 53(1): 247–273

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Fujita.

About this article

Cite this article

Hossain, M.A., Hasanuzzaman, M. & Fujita, M. Coordinate induction of antioxidant defense and glyoxalase system by exogenous proline and glycinebetaine is correlated with salt tolerance in mung bean. Front. Agric. China 5, 1–14 (2011). https://doi.org/10.1007/s11703-010-1070-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11703-010-1070-2

Keywords

Navigation