Skip to main content
Log in

Robot-assisted segmentectomy with improved modified inflation–deflation combined with the intravenous indocyanine green method

  • Research
  • Published:
Journal of Robotic Surgery Aims and scope Submit manuscript

Abstract

To investigate the perioperative outcomes of patients who underwent robot-assisted thoracoscopic (RATS) segmentectomy for identifying the intersegmental plane (ISP) by improved modified inflation–deflation (MID) combined with near-infrared fluorescence imaging with the intravenous indocyanine green (ICG) method and to assess the feasibility of this method in a large-scale cohort according to the type of segmentectomy performed. We retrospectively analysed the perioperative data of a total of 155 consecutive patients who underwent RATS segmentectomy between April 2020 and December 2021. Data from the operation, including the demarcation status of the intersegmental plane, were analysed retrospectively. The mean operative time and estimated blood loss were 125.56 ± 36.32 min and 41.81 ± 49.18 mL, respectively. Good demarcation of the intersegmental plane was observed in 150 (96.77%) patients, with no correlation with the type of resected segments or the surgical method. Postoperative complications of Clavien–Dindo classification grade 3 or more were observed in 4 patients (2.58%), and no ICG-related adverse events were noted. Demarcation of the intersegmental plane by improved MID combined with ICG is feasible regardless of the type of segmentectomy and can be commonly applied in robot-assisted segmentectomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

The datasets used and analysed during the current study available from the corresponding author on reasonable request.

References

  1. Suzuki K, Watanabe SI, Wakabayashi M, Saji H, Aokage K, Moriya Y, Yoshino I, Tsuboi M, Nakamura S, Nakamura K, Mitsudomi T, Asamura H, West Japan Oncology Group and Japan Clinical Oncology Group (2022) A single-arm study of sublobar resection for ground-glass opacity dominant peripheral lung cancer. J Thorac Cardiovasc Surg 163(1):289-301.e2. https://doi.org/10.1016/j.jtcvs.2020.09.146

    Article  PubMed  Google Scholar 

  2. Nakagawa K, Watanabe SI, Kunitoh H, Asamura H (2017) The Lung Cancer Surgical Study Group of the Japan Clinical Oncology Group: past activities, current status and future direction. Jpn J Clin Oncol 47(3):194–199. https://doi.org/10.1093/jjco/hyw169

    Article  PubMed  Google Scholar 

  3. Winckelmans T, Decaluwé H, De Leyn P, Van Raemdonck D (2020) Segmentectomy or lobectomy for early-stage non-small-cell lung cancer: a systematic review and meta-analysis. Eur J Cardiothorac Surg 57(6):1051–1060. https://doi.org/10.1093/ejcts/ezz339

    Article  PubMed  Google Scholar 

  4. Razi SS, Nguyen D, Villamizar N (2020) Lobectomy does not confer survival advantage over segmentectomy for non-small cell lung cancer with unsuspected nodal disease. J Thorac Cardiovasc Surg 159(6):2469-2483.e4. https://doi.org/10.1016/j.jtcvs.2019.10.165

    Article  PubMed  Google Scholar 

  5. Nomori H, Shiraishi A, Cong Y, Sugimura H, Mishima S (2018) Differences in postoperative changes in pulmonary functions following segmentectomy compared with lobectomy. Eur J Cardiothorac Surg 53(3):640–647. https://doi.org/10.1093/ejcts/ezx357

    Article  PubMed  Google Scholar 

  6. Tane S, Nishio W, Nishioka Y, Tanaka H, Ogawa H, Kitamura Y, Takenaka D, Yoshimura M (2019) Evaluation of the residual lung function after thoracoscopic segmentectomy compared with lobectomy. Ann Thorac Surg 108(5):1543–1550. https://doi.org/10.1016/j.athoracsur.2019.05.052

    Article  PubMed  Google Scholar 

  7. Nex G, Schiavone M, De Palma A, Quercia R, Brascia D, De Iaco G, Signore F, Panza T, Marulli G (2020) How to identify intersegmental planes in performing sublobar anatomical resections. J Thorac Dis 12(6):3369–3375. https://doi.org/10.21037/jtd.2020.01.09

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yao F, Wu W, Zhu Q, Zhai R, Xu X, Chen L (2021) Thoracoscopic pulmonary segmentectomy with collateral ventilation method. Ann Thorac Surg 112(6):1814–1823. https://doi.org/10.1016/j.athoracsur.2020.12.020

    Article  PubMed  Google Scholar 

  9. Yotsukura M, Okubo Y, Yoshida Y, Nakagawa K, Watanabe SI (2021) Indocyanine green imaging for pulmonary segmentectomy. JTCVS Tech 6(6):151–158. https://doi.org/10.1016/j.xjtc.2020.12.005

    Article  PubMed  PubMed Central  Google Scholar 

  10. Liu Z, Yang R, Cao H (2020) Near-infrared intraoperative imaging with indocyanine green is beneficial in video-assisted thoracoscopic segmentectomy for patients with chronic lung diseases: a retrospective single-center propensity-score matched analysis. J Cardiothorac Surg 15(1):303. https://doi.org/10.1186/s13019-020-01310-z

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cerfolio R, Louie BE, Farivar AS, Onaitis M, Park BJ (2017) Consensus statement on definitions and nomenclature for robotic thoracic surgery. J Thorac Cardiovasc Surg 154(3):1065–1069. https://doi.org/10.1016/j.jtcvs.2017.02.081

    Article  PubMed  Google Scholar 

  12. Matsuura Y, Mun M, Ichinose J, Nakao M, Nakagawa K, Okumura S (2019) Recent fluorescence-based optical imaging for video-assisted thoracoscopic surgery segmentectomy. Ann Transl Med 7(2):32. https://doi.org/10.21037/atm.2019.01.23

    Article  PubMed  PubMed Central  Google Scholar 

  13. Clavien PA, Barkun J, de Oliveira ML, Vauthey JN, Dindo D, Schulick RD, de Santibañes E, Pekolj J, Slankamenac K, Bassi C, Graf R, Vonlanthen R, Padbury R, Cameron JL, Makuuchi M (2009) The Clavien-Dindo classification of surgical complications: five-year experience. Ann Surg 250(2):187–196. https://doi.org/10.1097/SLA.0b013e3181b13ca2

    Article  PubMed  Google Scholar 

  14. Cahan WG (1960) Radical lobectomy. J Thorac Cardiovasc Surg 39:555–572 (PMID: 13806783)

    Article  CAS  PubMed  Google Scholar 

  15. Ginsberg RJ, Rubinstein LV (1995) Randomized trial of lobectomy versus limited resection for T1 N0 non-small cell lung cancer. Lung Cancer Study Group. Ann Thorac Surg 60(3):615–622. https://doi.org/10.1016/0003-4975(95)00537-u

    Article  CAS  PubMed  Google Scholar 

  16. Saji H, Okada M, Tsuboi M, Nakajima R, Suzuki K, Aokage K, Aoki T, Okami J, Yoshino I, Ito H, Okumura N, Yamaguchi M, Ikeda N, Wakabayashi M, Nakamura K, Fukuda H, Nakamura S, Mitsudomi T, Watanabe SI, Asamura H, West Japan Oncology Group and Japan Clinical Oncology Group (2022) Segmentectomy versus lobectomy in small-sized peripheral non-small-cell lung cancer (JCOG0802/WJOG4607L): a multicentre, open-label, phase 3, randomised, controlled, non-inferiority trial. Lancet 399(10335):1607–1617. https://doi.org/10.1016/S0140-6736(21)02333-3

    Article  CAS  PubMed  Google Scholar 

  17. Andolfi M, Potenza R, Seguin-Givelet A, Gossot D (2020) Identification of the intersegmental plane during thoracoscopic segmentectomy: state of the art. Interact Cardiovasc Thorac Surg 30(3):329–336. https://doi.org/10.1093/icvts/ivz278

    Article  PubMed  Google Scholar 

  18. Wang J, Xu X, Wen W, Wu W, Zhu Q, Chen L (2018) Modified method for distinguishing the intersegmental border for lung segmentectomy. Thorac Cancer 9(2):330–333. https://doi.org/10.1111/1759-7714.12540

    Article  PubMed  Google Scholar 

  19. Fu HH, Feng Z, Li M, Wang H, Ren WG, Peng ZM (2020) The arterial-ligation-alone method for identifying the intersegmental plane during thoracoscopic anatomic segmentectomy. J Thorac Dis 12(5):2343–2351. https://doi.org/10.21037/jtd.2020.03.83

    Article  PubMed  PubMed Central  Google Scholar 

  20. Misaki N, Tatakawa K, Chang SS, Go T, Yokomise H (2020) Constant-rate intravenous infusion of indocyanine green leading to high fluorescence intensity in infrared thoracoscopic segmentectomy. JTCVS Tech 11(3):319–324. https://doi.org/10.1016/j.xjtc.2020.05.001

    Article  Google Scholar 

  21. Iizuka S, Kuroda H, Yoshimura K, Dejima H, Seto K, Naomi A, Mizuno T, Sakakura N, Sakao Y (2016) Predictors of indocyanine green visualization during fluorescence imaging for segmental plane formation in thoracoscopic anatomical segmentectomy. J Thorac Dis 8(5):985–991. https://doi.org/10.21037/jtd.2016.03.59

    Article  PubMed  PubMed Central  Google Scholar 

  22. Motono N, Iwai S, Funasaki A, Sekimura A, Usuda K, Uramoto H (2019) Low-dose indocyanine green fluorescence-navigated segmentectomy: prospective analysis of 20 cases and review of previous reports. J Thorac Dis 11(3):702–707. https://doi.org/10.21037/jtd.2019.02.70

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sun Y, Zhang Q, Wang Z, Shao F, Yang R (2021) Feasibility investigation of near-infrared fluorescence imaging with intravenous indocyanine green method in uniport video-assisted thoracoscopic anatomical segmentectomy for identifying the intersegmental boundary line. Thorac Cancer 12(9):1407–1414. https://doi.org/10.1111/1759-7714.13923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Iwata H, Shirahashi K, Mizuno Y, Matsui M, Takemura H (2013) Surgical technique of lung segmental resection with two intersegmental planes. Interact Cardiovasc Thorac Surg 16(4):423–425. https://doi.org/10.1093/icvts/ivs560. (Epub 2013 Jan 11)

    Article  PubMed  PubMed Central  Google Scholar 

  25. Xu H, Chang X, Zhang L (2022) A method to identify intersegmental planes for robotic-assisted anatomic segmentectomy without waiting. Surg Laparosc Endosc Percutan Tech. https://doi.org/10.1097/SLE.0000000000001040

    Article  PubMed  Google Scholar 

  26. Ferrari-Light D, Geraci TC, Sasankan P, Cerfolio RJ (2019) The utility of near-infrared fluorescence and indocyanine green during robotic pulmonary resection. Front Surg 9(6):47. https://doi.org/10.3389/fsurg.2019.00047

    Article  Google Scholar 

  27. Alander JT, Kaartinen I, Laakso A, Pätilä T, Spillmann T, Tuchin VV, Venermo M, Välisuo P (2012) A review of indocyanine green fluorescent imaging in surgery. Int J Biomed Imaging 2012:940585. https://doi.org/10.1155/2012/940585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Matsuura Y, Ichinose J, Nakao M, Okumura S, Mun M (2020) Recent fluorescence imaging technology applications of indocyanine green in general thoracic surgery. Surg Today 50(11):1332–1342. https://doi.org/10.1007/s00595-019-01906-6

    Article  PubMed  Google Scholar 

Download references

Funding

No funding was provided for this work.

Author information

Authors and Affiliations

Authors

Contributions

Xu Hao and Zhang Linyou wrote the main manuscript text and Chang Xiaoyan prepared figures 1-3. All authors reviewed the manuscript

Corresponding author

Correspondence to Zhang Linyou.

Ethics declarations

Conflict of interest

Drs. Xu Hao, Chang Xiaoyan, and Zhang Linyou have no conflicts of interest or financial ties to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Video1. Demarcation of the intersegmental plane by improved MID combined with systemic injection of indocyanine green method (MP4 18630 KB)

Video2. Robot-assisted Left S1+2 segmentectomy. (MP4 15689 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, X., Xiaoyan, C. & Linyou, Z. Robot-assisted segmentectomy with improved modified inflation–deflation combined with the intravenous indocyanine green method. J Robotic Surg 17, 2195–2203 (2023). https://doi.org/10.1007/s11701-023-01639-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11701-023-01639-2

Keywords

Navigation