Skip to main content
Log in

Volume-outcome relationship in intra-abdominal robotic-assisted surgery: a systematic review

  • Original Article
  • Published:
Journal of Robotic Surgery Aims and scope Submit manuscript

Abstract

As robotic-assisted surgery (RAS) expands to smaller centres, platforms are shared between specialities. Healthcare providers must consider case volume and mix required to maintain quality and cost-effectiveness. This can be informed, in-part, by the volume-outcome relationship. We perform a systematic review to describe the volume-outcome relationship in intra-abdominal robotic-assisted surgery to report on suggested minimum volumes standards. A literature search of Medline, NICE Evidence Search, Health Technology Assessment Database and Cochrane Library using the terms: “robot*”, “surgery”, “volume” and “outcome” was performed. The included procedures were gynecological: hysterectomy, urological: partial and radical nephrectomy, cystectomy, prostatectomy, and general surgical: colectomy, esophagectomy. Hospital and surgeon volume measures and all reported outcomes were analysed. 41 studies, including 983,149 procedures, met the inclusion criteria. Study quality was assessed using the Newcastle–Ottawa Quality Assessment Scale and the retrieved data was synthesised in a narrative review. Significant volume-outcome relationships were described in relation to key outcome measures, including operative time, complications, positive margins, lymph node yield and cost. Annual surgeon and hospital volume thresholds were described. We concluded that in centres with an annual volume of fewer than 10 cases of a given procedure, having multiple surgeons performing these procedures led to worse outcomes and, therefore, opportunities should be sought to perform other complimentary robotic procedures or undertake joint cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Childers CP, Maggard-Gibbons M (2018) Estimation of the acquisition and operating costs for robotic surgery. JAMA 153(4):e176233. https://doi.org/10.1001/jama.2018.9219

    Article  Google Scholar 

  2. Sheetz KH, Claflin J, Dimick JB (2020) Trends in the adoption of robotic surgery for common surgical procedures. JAMA Netw Open 3(1):e1918911. https://doi.org/10.1001/jamanetworkopen.2019.18911

    Article  PubMed  PubMed Central  Google Scholar 

  3. Luft HS, Bunker JP, Enthoven AC (1979) Should operations be regionalized? The empirical relation between surgical volume and mortality. N Engl J Med 301(25):1364–1369. https://doi.org/10.1056/NEJM197912203012503

    Article  CAS  PubMed  Google Scholar 

  4. Birkmeyer JD, Siewers AE, Finlayson EVA, Stukel TA, Lucas FE, Batista I, Welch HG, Wennberg DE (2002) Hospital volume and surgical mortality in the United States. N Engl JMed 301:1364–1369. https://doi.org/10.1056/NEJMsa012337

    Article  Google Scholar 

  5. Chowdhury MM, Dagash H, Pierro A (2007) A systematic review of the impact of volume of surgery and specialization on patient outcome. Br J Surg 94(2):145–161. https://doi.org/10.1002/bjs.5714

    Article  CAS  PubMed  Google Scholar 

  6. Pieper D, Mathes T, Neugebauer EAM, Eikermann M (2013) State of evidence on the relationship between high-volume hospitals and outcomes in surgery: a systematic review of systematic reviews. J Am Coll Surg 216(5):1015-1025.e18. https://doi.org/10.1016/j.jamcollsurg.2012.12.049

    Article  PubMed  Google Scholar 

  7. Birkmeyer JD (2012) Progress and challenges in improving surgical outcomes. Br J Surg 99(11):1467–1469. https://doi.org/10.1002/bjs.8933

    Article  CAS  PubMed  Google Scholar 

  8. Urbach DR (2015) Pledging to eliminate low-volume surgery. N Engl J Med 99(11):1467–1469. https://doi.org/10.1056/NEJMp1508472

    Article  CAS  Google Scholar 

  9. Leapfrog Group (2018) Safety in Numbers. https://www.leapfroggroup.org/sites/default/files/Files/Safety%20in%20Numbers_Leapfrog%20Report%20on%20Surgical%20Volume_3.pdf (Accessed 13 Feb 2022)

  10. Healthcare Improvement Scotland. Cancer Quality Performance Indicators. http://www.healthcareimprovementscotland.org/our_work/cancer_care_improvement/cancer_qpis/quality_performance_indicators.aspx (Accessed 13 Feb 2022)

  11. Getting it right first time. Workstreams. https://www.gettingitrightfirsttime.co.uk/workstreams/ (Accessed 13 Feb 2022)

  12. Gemeinsamer Budesausschuss. Mindestmengenregelungen. https://www.g-ba.de/richtlinien/5/ (Accessed 13 Feb 2022)

  13. Fantus RJ, Cohen A, Riedinger CB, Kuchta K, Wang CH, Yao K, Park S (2019) Facility-level analysis of robot utilization across disciplines in the National Cancer Database. J Robot Surg 13:293–299. https://doi.org/10.1007/s11701-018-0855-9

    Article  PubMed  Google Scholar 

  14. US Food and Drug Administration (2019) Caution when using robotically-assisted surgical devices in women's health including mastectomy and other cancer-related surgeries: FDA safety communication. https://www.fda.gov/medical-devices/safety-communications/caution-when-using-robotically-assisted-surgical-devices-womens-health-including-mastectomy-and (Accessed 13 Feb 2022)

  15. Tan A, Ashrafian H, Scott AJ, Mason SE, Harling L, Athanasiou T, Darzi A (2016) Robotic surgery: disruptive innovation or unfulfilled promise? A systematic review and meta-analysis of the first 30 years. Surg Endosc 30:4330–4352. https://doi.org/10.1007/s00464-016-4752-x

    Article  PubMed  PubMed Central  Google Scholar 

  16. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 29(372):n71. https://doi.org/10.1136/bmj.n71

    Article  Google Scholar 

  17. Day E, Galbraith N, Roxburgh C. Volume-outcome relationship in intra-abdominal robotic-assisted surgery. PROSPERO 2021 CRD42021288542

  18. Wells GA, Shea B, O'Connell D, Peterson J, Welch V, Losos M, Tugwell P. The Newcastle-Ottawa Scale (NOS) for assessing the quality if nonrandomized studies in meta-analyses. http://www.ohri.ca/programs/clinical_epidemiology/oxford.htm (Accessed 13 Feb 2022)

  19. Wright JD, Ananth CV, Tergas AI, Herzog TJ, Burke WM, Lewin SN, Lu YS, Neugut AI, Hershman DL (2014) An economic analysis of robotically assisted hysterectomy. Obstet Gynecol 123(5):1038–1048. https://doi.org/10.1097/AOG.0000000000000244

    Article  PubMed  PubMed Central  Google Scholar 

  20. Unger CA, Lachiewicz MP, Ridgeway B (2016) Risk factors for robotic gynecologic procedures requiring conversion to other surgical procedures. Int J Gynaecol Obstet 135(3):299–303. https://doi.org/10.1016/j.ijgo.2016.06.016

    Article  PubMed  Google Scholar 

  21. Ruiz MP, Chen L, Hou JY, Tergas AI, St Clair CM, Ananth CV, Neugut AI, Hershman DL, Wright JD (2018) Effect of minimum-volume standards on patient outcomes and surgical practice patterns for hysterectomy. Obstet Gynecol 132(5):1229–1237. https://doi.org/10.1097/AOG.0000000000002912

    Article  PubMed  PubMed Central  Google Scholar 

  22. Baba T, Mandai M, Nishi H, Nishii O, Kitawaki J, Sawada M, Isaka K, Fujii T (2019) Early feasibility surveillance of gynecologic robotic-assisted surgeries in Japan. J Obstet Gynaecol Res 45(4):787–793. https://doi.org/10.1111/jog.13923

    Article  PubMed  Google Scholar 

  23. Matsuo K, Matsuzaki S, Mandelbaum RS, Chang EJ, Klar M, Matsushima K, Grubbs BH, Roman LD, Wright JD (2020) Minimally invasive radical hysterectomy for early-stage cervical cancer: volume-outcome relationship in the early experience period. Gynecol Oncol 158(2):390–396. https://doi.org/10.1016/j.ygyno.2020.05.009

    Article  PubMed  PubMed Central  Google Scholar 

  24. Brunes M, Forsgren C, Warnqvist A, Ek M, Johannesson U (2021) Assessment of surgeon and hospital volume for robot-assisted and laparoscopic benign hysterectomy in Sweden. Acta Obstet Gynecol Scand 100(9):1730–1739. https://doi.org/10.1111/aogs.14166

    Article  PubMed  Google Scholar 

  25. Keller DS, Hashemi L, Lu M, Delaney CP (2013) Short-term outcomes for robotic colorectal surgery by provider volume. J Am Coll Surg 217(6):1063-1069.e1. https://doi.org/10.1016/j.jamcollsurg.2013.07.390

    Article  PubMed  Google Scholar 

  26. Bastawrous A, Baer C, Rashidi L, Neighorn C (2018) Higher robotic colorectal surgery volume improves outcomes. Am J Surg 215(5):874–878. https://doi.org/10.1016/j.amjsurg

    Article  CAS  PubMed  Google Scholar 

  27. Concors SJ, Murken DR, Hernandez PT, Mahmoud NN, Paulson EC (2020) The volume-outcome relationship in robotic protectectomy: does center volume matter? Results of a national cohort study. Surg Endosc 34(10):4472–4480. https://doi.org/10.1007/s00464-019-07227-6

    Article  PubMed  Google Scholar 

  28. Hue JJ, Bachman KC, Worrell SG, Gray KE, Linden PA, Towe CW (2021) Outcomes of robotic esophagectomies for esophageal cancer by hospital volume: an analysis of the national cancer database. Surg Endosc 35(7):3802–3810. https://doi.org/10.1007/s00464-020-07875-z

    Article  PubMed  Google Scholar 

  29. Monn MF, Bahler CD, Flack CK, Dube HT, Sundaram CP (2014) The impact of hospital volume on postoperative complications following robot-assisted partial nephrectomy. J Endourol 28(10):1231–1236. https://doi.org/10.1089/end.2014.0265

    Article  PubMed  Google Scholar 

  30. Khandwala YS, Jeong IG, Kim JH, Han DH, Li S, Wang Y, Chang SL, Chung BI (2017) The incidence of unsuccessful partial nephrectomy within the United States: A nationwide population-based analysis from 2003 to 2015. Urol Oncol 35(12):672.e7-672.e13. https://doi.org/10.1016/j.urolonc.2017.08.014

    Article  PubMed  Google Scholar 

  31. Khandwala YS, Jeong IG, Kim JH, Han DH, Li S, Wang Y, Chang SL, Chung BI (2017) The impact of surgeon volume on perioperative outcomes and cost for patients receiving robotic partial nephrectomy. J Endourol 31(9):851–857. https://doi.org/10.1089/end.2017.0207

    Article  PubMed  Google Scholar 

  32. Peyronnet B, Tondut L, Bernhard JC, Vaessen C, Doumerc N, Sebe P, Pradere B, Guillonneau B, Khene ZE, Nouhaud FX, Brichart N, Seisen T, Alimi Q, Beauval JB, Mathieu R, Rammal A, de la Taille A, Baumert H, Droupy S, Bruyere F, Rouprêt M, Mejean A, Bensalah K, members of the French Committee of Urologic Oncology (CCAFU) (2018) Impact of hospital volume and surgeon volume on robot-assisted partial nephrectomy outcomes: a multicentre study. BJU Int 121(6):916–922. https://doi.org/10.1111/bju.14175

    Article  PubMed  Google Scholar 

  33. Arora S, Keeley J, Pucheril D, Menon M, Rogers CG (2018) What is the hospital volume threshold to optimize inpatient complication rate after partial nephrectomy? Urol Oncol 36(7):339.e17-339.e23. https://doi.org/10.1016/j.urolonc.2018.04.009

    Article  PubMed  Google Scholar 

  34. Xia L, Pulido JE, Chelluri RR, Strother MC, Taylor BL, Raman JD, Guzzo TJ (2018) Hospital volume and outcomes of robot-assisted partial nephrectomy. BJU Int 21(6):900–907. https://doi.org/10.1111/bju.14099

    Article  Google Scholar 

  35. Khene ZE, Peyronnet B, Bernhard JC, Kocher NJ, Vaessen C, Doumerc N, Pradere B, Seisen T, Beauval JB, Verhoest G, Roumiguié M, De la Taille A, Bruyere F, Roupret M, Mejean A, Mathieu R, Shariat S, Raman JD, Bensalah K, members of the French Committee of Urologic Oncology (CCAFU) (2019) A preoperative nomogram to predict major complications after robot assisted partial nephrectomy (UroCCR-57 study). Urol Oncol 37:577.e1-577.e7. https://doi.org/10.1016/j.urolonc.2019.05.007

    Article  PubMed  Google Scholar 

  36. Gray WK, Day J, Briggs TWR, Harrison S (2020) Understanding volume-outcome relationships in nephrectomy and cystectomy for cancer: evidence from the UK Getting it Right First Time programme. BJU Int 125(2):234–243. https://doi.org/10.1111/bju.14939

    Article  PubMed  Google Scholar 

  37. Mellouki A, Bentellis I, Morrone A, Doumerc N, Beauval JB, Roupret M, Nouhaud FX, Lebacle C, Long JA, Chevallier D, Tibi B, Shaikh A, Imbert de la Phalecque L, Pillot P, Tillou X, Bernhard JC, Durand M, Ahallal Y (2021) Evaluation of oncological outcomes of robotic partial nephrectomy according to the type of hilar control approach (On-clamp vs Off-clamp), a multicentric study of the French network of research on kidney cancer-UROCCR 58-NCT03293563. World J Urol. https://doi.org/10.1007/s00345-020-03558-5

  38. Marshall SJ, Hayn MH, Stegemann AP, Agarwal PK, Badani KK, Balbay MD, Dasgupta P, Hemal AK, Hollenbeck BK, Kibel AS, Menon M, Mottrie A, Nepple K, Pattaras JG, Peabody JO, Poulakis V, Pruthi RS, Palou Redorta J, Rha KH, Richstone L, Schanne F, Scherr DS, Siemer S, Stöckle M, Wallen EM, Weizer AZ, Wiklund P, Wilson T, Woods M, Guru KA (2013) Impact of surgeon and volume on extended lymphadenectomy at the time of robot-assisted radical cystectomy: results from the International Robotic Cystectomy Consortium (IRCC). BJU Int 111(7):1075–1080. https://doi.org/10.1111/j.1464-410X.2012.11583.x

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hussein AA, May PR, Ahmed YE, Saar M, Wijburg CJ, Richstone L, Wagner A, Wilson T, Yuh B, Redorta JP, Dasgupta P, Kawa O, Khan MS, Menon M, Peabody JO, Hosseini A, Gaboardi F, Pini G, Schanne F, Mottrie A, Rha KH, Hemal A, Stockle M, Kelly J, Tan WS, Maatman TJ, Poulakis V, Kaouk J, Canda AE, Balbay MD, Wiklund P, Guru KA (2017) Development of a patient and institutional-based model for estimation of operative times for robot-assisted radical cystectomy: results from the International Robotic Cystectomy Consortium. BJU Int 120(5):695–701. https://doi.org/10.1111/bju.13934

    Article  CAS  PubMed  Google Scholar 

  40. Miguel CM, Kosinski KE, Fazzari MJ, Kongnyuy M, Smaldone MC, Schiff JT, Katz AE, Corcoran AT (2020) Pathologic measures of quality compare favorably in patients undergoing robot-assisted radical cystectomy to open cystectomy cohorts: a National Cancer Database analysis. J Robot Surg 14(4):609–614. https://doi.org/10.1007/s11701-019-01031-z

    Article  PubMed  Google Scholar 

  41. Hussein AA, Elsayed AS, Aldhaam NA, Jing Z, Peabody JO, Wijburg CJ, Wagner A, Canda AE, Khan MS, Scherr D, Schanne F, Maatman TJ, Kim E, Mottrie A, Aboumohamed A, Gaboardi F, Pini G, Kaouk J, Yuh B, Rha KH, Hemal A, Palou Redorta J, Badani K, Saar M, Stockle M, Richstone L, Roupret M, Balbay D, Dasgupta P, Menon M, Guru KA (2020) A comparative propensity score-matched analysis of perioperative outcomes of intracorporeal vs extracorporeal urinary diversion after robot-assisted radical cystectomy: results from the International Robotic Cystectomy Consortium. BJU Int 126(2):265–272. https://doi.org/10.1111/bju.15083

    Article  PubMed  Google Scholar 

  42. Yu HY, Hevelone ND, Lipsitz SR, Kowalczyk KJ, Nguyen PL, Hu JC (2012) Hospital volume, utilization, costs and outcomes of robot-assisted laparoscopic radical prostatectomy. J Urol 187(5):1632–1637. https://doi.org/10.1016/j.juro.2011.12.071

    Article  PubMed  Google Scholar 

  43. Hyams ES, Mullins JK, Pierorazio PM, Partin AW, Allaf ME, Matlaga BR (2013) Impact of robotic technique and surgical volume on the cost of radical prostatectomy. J Endourol 27(3):298–303. https://doi.org/10.1089/end.2012.0147

    Article  PubMed  Google Scholar 

  44. Sammon JD, Sharma P, Trinh QD, Ghani KR, Sukumar S, Menon M (2013) Predictors of immediate continence following robot-assisted radical prostatectomy. J Endourol 27(4):442–446. https://doi.org/10.1089/end.2012.0312

    Article  PubMed  Google Scholar 

  45. Sammon JD, Karakiewicz PI, Sun M, Sukumar S, Ravi P, Ghani KR, Bianchi M, Peabody JO, Shariat SF, Perrotte P, Hu JC, Menon M, Trinh QD (2013) Robot-assisted versus open radical prostatectomy: the differential effect of regionalization, procedure volume and operative approach. J Urol 89(4):1289–1294. https://doi.org/10.1016/j.juro.2012.10.028

    Article  Google Scholar 

  46. Carter SC, Lipsitz S, Shih YC, Nguyen PL, Trinh QD, Hu JC (2014) Population-based determinants of radical prostatectomy operative time. BJU Int 113(5b):E112–E118. https://doi.org/10.1111/bju.12451

    Article  PubMed  Google Scholar 

  47. Sooriakumaran P, Srivastava A, Shariat SF, Stricker PD, Ahlering T, Eden CG, Wiklund PN, Sanchez-Salas R, Mottrie A, Lee D, Neal DE, Ghavamian R, Nyirady P, Nilsson A, Carlsson S, Xylinas E, Loidl W, Seitz C, Schramek P, Roehrborn C, Cathelineau X, Skarecky D, Shaw G, Warren A, Delprado WJ, Haynes AM, Steyerberg E, Roobol MJ, Tewari AK (2014) A multinational, multi-institutional study comparing positive surgical margin rates among 22393 open, laparoscopic, and robot-assisted radical prostatectomy patients. Eur Urol 66(3):450–456. https://doi.org/10.1016/j.eururo.2013.11.018

    Article  PubMed  Google Scholar 

  48. Friðriksson JÖ, Holmberg E, Adolfsson J, Lambe M, Bill-Axelson A, Carlsson S, Hugosson J, Stattin P (2014) Rehospitalization after radical prostatectomy in a nationwide, population based study. J Urol 192(1):112–119. https://doi.org/10.1016/j.juro.2014.01.109

    Article  PubMed  Google Scholar 

  49. Weiner AB, Murthy P, Richards KA, Patel SG, Eggener SE (2015) Population based analysis of incidence and predictors of open conversion during minimally invasive radical prostatectomy. J Urol 193(3):826–831. https://doi.org/10.1016/j.juro.2014.09.113

    Article  PubMed  Google Scholar 

  50. Cole AP, Leow JJ, Chang SL, Chung BI, Meyer CP, Kibel AS, Menon M, Nguyen PL, Choueiri TK, Reznor G, Lipsitz SR, Sammon JD, Sun M, Trinh QD (2016) Surgeon and hospital level variation in the costs of robot-assisted radical prostatectomy. J Urol 96(4):1090–1095. https://doi.org/10.1016/j.juro.2016.04.087

    Article  Google Scholar 

  51. Hirasawa Y, Yoshioka K, Nasu Y, Yamamoto M, Hinotsu S, Takenaka A, Fujisawa M, Shiroki R, Tozawa K, Fukasawa S, Kashiwagi A, Tatsugami K, Tachibana M, Terachi T, Gotoh M (2017) Impact of surgeon and hospital volume on the safety of robot-assisted radical prostatectomy: a multi-institutional study based on a national database. Urol Int 98(3):334–342. https://doi.org/10.1159/000460304

    Article  PubMed  Google Scholar 

  52. Gershman B, Meier SK, Jeffery MM, Moreira DM, Tollefson MK, Kim SP, Karnes RJ, Shah ND (2017) Redefining and contextualizing the hospital volume-outcome relationship for robot-assisted radical prostatectomy: implications for centralization of care. J Urol 98(1):92–99. https://doi.org/10.1016/j.juro.2017.01.067

    Article  Google Scholar 

  53. Simon RM, Howard LE, Moreira DM, Terris MK, Kane CJ, Aronson WJ, Amling CL, Cooperberg MR, Freedland SJ (2017) Predictors of operative time during radical retropubic prostatectomy and robot-assisted laparoscopic prostatectomy. Int J Urol 24(8):618–623. https://doi.org/10.1111/iju.13393,Aug

    Article  PubMed  Google Scholar 

  54. Mukherjee K, Kamal KM (2019) Variation in prostate surgery costs and outcomes in the USA: robot-assisted versus open radical prostatectomy. J Comp Eff Res 8(3):143–155. https://doi.org/10.2217/cer-2018-0109

    Article  PubMed  Google Scholar 

  55. Nyberg M, Sjoberg DD, Carlsson SV, Wilderäng U, Carlsson S, Stranne J, Wiklund P, Steineck G, Haglind E, Hugosson J, Bjartell A (2021) Surgeon heterogeneity significantly affects functional and oncological outcomes after radical prostatectomy in the Swedish LAPPRO trial. BJU Int 127(3):361–368. https://doi.org/10.1111/bju.15238

    Article  PubMed  Google Scholar 

  56. Xia L, Sperling CD, Taylor BL, Talwar R, Chelluri RR, Raman JD, Lee DJ, Lee DI, Guzzo TJ (2020) Associations between hospital volume and outcomes of robot-assisted radical prostatectomy. J Urol 203(5):926–932. https://doi.org/10.1097/JU.0000000000000698

    Article  PubMed  Google Scholar 

  57. Chang SC, Hsu CH, Lin YC, Wu SY (2021) Effects of 1-year hospital volume on surgical margin and biochemical-failure-free survival in patients undergoing robotic versus nonrobotic radical prostatectomy: a nationwide cohort study from the National Taiwan Cancer Database. Cancers 13(3):488. https://doi.org/10.3390/cancers13030488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Godtman RA, Persson E, Cazzaniga W, Sandin F, Carlsson S, Ahlgren G, Johansson E, Robinsson D, Hugosson J, Stattin P (2021) Association of surgeon and hospital volume with short-term outcomes after robot-assisted radical prostatectomy: Nationwide, population-based study. PLoS ONE 16(6):e0253081. https://doi.org/10.1371/journal.pone.0253081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lindenberg MMA, Retèl VVP, Kieffer JJM, Wijburg CC, Fossion LLMCL, van der Poel HHG, van Harten WWH (2021) Long-term functional outcomes after robot-assisted prostatectomy compared to laparoscopic prostatectomy: results from a national retrospective cluster study. Eur J Surg Oncol 47(10):2658–2666. https://doi.org/10.1016/j.ejso.2021.06.006

    Article  PubMed  Google Scholar 

  60. Hayn MH, Hellenthal NJ, Hussain A, Andrews PE, Carpentier P, Castle E, Dasgupta P, Davis R, Thomas R, Khan S, Kibel A, Kim H, Manoharan M, Menon M, Mottrie A, Ornstein D, Peabody J, Pruthi R, Palou Redorta J, Vira M, Schanne F, Stricker H, Wiklund P, Wilding G, Guru KA (2010) Does previous robot-assisted radical prostatectomy experience affect outcomes at robot-assisted radical cystectomy? Results from the International Robotic Cystectomy Consortium. Urology 76(5):1111–1116. https://doi.org/10.1016/j.urology.2010.05.010

    Article  PubMed  Google Scholar 

  61. Maynou L, Mehtsun WT, Serra-Sastre V, Papanicolas I (2021) Patterns of adoption of robotic radical prostatectomy in the United States and England. Health Serv Res 56(Suppl 3):1441–1461. https://doi.org/10.1111/1475-6773.13706

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sugihara T, Yasunaga H, Horiguchi H, Fushimi K, Dalton JE, Schold J, Kattan MW, Homma Y (2014) Performance comparisons in major uro-oncological surgeries between the USA and Japan. Int J Urol 21(11):1145–1150. https://doi.org/10.1111/iju.12548

    Article  PubMed  Google Scholar 

  63. Feldstein J, Schwander B, Roberts M, Coussons H (2019) Cost of ownership assessment for a da Vinci robot based on US real-world data. Int J Med Robot 15(5):e2023. https://doi.org/10.1002/rcs.2023

    Article  PubMed  Google Scholar 

  64. Wasif N, Etzioni D, Habermann EB, Mathur A, Chang YH (2019) Contemporary improvements in postoperative mortality after major cancer surgery are associated with weakening of the volume-outcome association. Ann Surg Oncol 26(8):2348–2356. https://doi.org/10.1245/s10434-019-07413-9

    Article  PubMed  Google Scholar 

  65. Stringfield SB, Parry LA, Eisenstein SG, Horgan SN, Kane CJ, Ramamoorthy SL (2021) Experience with 10 years of a robotic surgery program at an Academic Medical Center. Surg Endosc 36(3):1950–1960. https://doi.org/10.1007/s00464-021-08478-y

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kurlansky PA, Argenziano M, Dunton R, Lancey R, Nast E, Stewart A, Williams T, Zapolanski A, Chang H, Tingley J, Smith CR (2012) Quality, not volume, determines outcome of coronary artery bypass surgery in a university-based community hospital network. J Thorac Cardiovasc Surg 143(2):287–293. https://doi.org/10.1016/j.jtcvs.2011.10.043

    Article  PubMed  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by EKD and NJG. The first draft of the manuscript was written by EKD and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Elizabeth K. Day.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 25 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Day, E.K., Galbraith, N.J., Ward, H.J.T. et al. Volume-outcome relationship in intra-abdominal robotic-assisted surgery: a systematic review. J Robotic Surg 17, 811–826 (2023). https://doi.org/10.1007/s11701-022-01461-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11701-022-01461-2

Keywords

Navigation