Davies B (2015) Robotic surgery—a personal view of the past, present and future. Int J Adv Robot Syst 12(5):54. https://doi.org/10.5772/60118
Article
Google Scholar
Fard MJ, Pandya AK, Chinnam RB, Klein M, Ellis R (2016) Distance-based time series classification approach for task recognition with application in surgical robot autonomy: task and gesture recognition in robotic minimally invasive surgery. Int J Med Robot Comput Assist Surg 1:3. https://doi.org/10.1002/rcs.1766
Article
Google Scholar
Ghani KR, Miller DC, Linsell S, Brachulis A, Lane B, Sarle R, Dalela D, Menon M, Comstock B, Lendvay TS, Montie J, Peabody JO (2016) Measuring to improve: peer and crowd-sourced assessments of technical skill with robot-assisted radical prostatectomy. Eur Urol 69(4):547–550
Article
Google Scholar
Johnson BA, Timberlake M, Steinberg RL, Kosemund M, Mueller B, Gahan JC (2019) Design and validation of a low-cost, high-fidelity model for the urethrovesical anastomosis in radical prostatectomy. J Endourol Ja 33:331–336
Article
Google Scholar
Han J, Zhang D, Cheng G, Liu N, Dong X (2018) Advanced deep-learning techniques for salient and category-specific object detection: a survey. IEEE Signal Process Mag 35(1):84–100
Article
Google Scholar
LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. In: Proceedings of the IEEE. IEEE, vol 86, issue 11, pp 2278–2324. https://doi.org/10.1109/5.726791
Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Proceedings of the international conference on medical image computing and computer-assisted intervention. Springer, pp 234–241
Hasan SMK, Linte CA (2019) U-NetPlus: a modified encoderdecoder u-net architecture for semantic and instance segmentation of surgical instruments from laparoscopic images. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, pp 7205–7211
Islam M, Atputharuban DA, Ramesh R, Ren H (2019) Real-time instrument segmentation in robotic surgery using auxiliary supervised deep adversarial learning. IEEE Robot Autom Lett 4(2):2188–2195
Article
Google Scholar
Shvets AA, Rakhlin A, Kalinin AA, Iglovikov VI (2018) Automatic instrument segmentation in robot-assisted surgery using deep learning. In: 2018 17th IEEE International Conference on machine learning and applications (ICMLA). IEEE, pp 624–628
Kim Y (2014) Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882
Yin W, Kann K, Yu M, Schütze H (2017) Comparative study of CNN and RNN for natural language processing. CoRR https://arxiv.org/abs/1702.01923
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention is all you need. arXiv preprint arXiv:1706.03762
Ramachandram D, Taylor GW (2017) Deep multimodal learning: a survey on recent advances and trends. IEEE Signal Process Mag 34(6):96–108
Article
Google Scholar
Zhao Z, Voros S, Weng Y, Chang F, Li R (2017) Tracking-by-detection of surgical instruments in minimally invasive surgery via the convolutional neural network deep learning-based method. Comput Assist Surg 22(sup1):26–35
Article
Google Scholar
Law H, Ghani K, Deng J (2017) Surgeon technical skill assessment using computer vision based analysis. In: Proceedings of the machine learning for healthcare conference, pp 88–99
Lee D, Yu HW, Kwon H, Kong H-J, Lee KE, Kim HC (2020) Evaluation of surgical skills during robotic surgery by deep learning-based multiple surgical instrument tracking in training and actual operations. J Clin Med 9(6):1964
Article
Google Scholar
Gahan J, Steinberg R, Garbens A, Qu X, Larson E (2020) Machine learning using a multi-task convolutional neural networks to accurately assess robotic skills. J Urol 203(Supplement 4):e505–e505
Google Scholar
Goh AC, Goldfarb DW, Sander JC, Miles BJ, Dunkin BJ (2012) Global evaluative assessment of robotic skills: validation of a clinical assessment tool to measure robotic surgical skills. J Urol 187(1):247–252
Article
Google Scholar
Tombari F, Di Stefano L (2010) Object recognition in 3d scenes with occlusions and clutter by hough voting. In: 2010 Fourth Pacific-Rim Symposium on image and video technology. IEEE, pp 349–355
He K, Zhang X, Ren S, Sun J (2016) Identity mappings in deep residual networks. In: European Conference on computer vision. Springer, pp 630–645
Wu Y, He K (2018) Group normalization. In: Proceedings of the European Conference on computer vision (ECCV), pp 3–19