Skip to main content

Advertisement

Log in

Linear extent of positive surgical margin impacts biochemical recurrence after robot-assisted radical prostatectomy in a high-volume center

  • Original Article
  • Published:
Journal of Robotic Surgery Aims and scope Submit manuscript

Abstract

The objective of this study is to evaluate if surgeon volume and stratifying positive surgical margins (PSM) into focal and non-focal may differentially impact the risk of biochemical recurrence (BCR) after robot-assisted radical prostatectomy (RARP). Between January 2013 and December 2017, 732 consecutive patients were evaluated. The population included negative cases (control group) and PSM subjects (study group). PSMs were stratified as focal (≤ 1 mm) or non-focal (> 1 mm). A logistic regression model assessed the independent association of factors with the risk of PSM. The risk of BCR of PSM and other factors was assessed by Cox’s multivariate proportional hazards. Overall, 192 (26.3%) patients had PSM focal in 133 patients; non-focal in 59 cases. Focal PSM was associated with the percentage of biopsy positive cores (BPC; OR 1.011; p = 0.015), extra-capsular extension (pT3a stage; OR 2.064; p = 0.016), seminal vesicle invasion (pT3b; OR 2.150; p = 0.010), body mass index (odds ratio, OR 0.914; p = 0.006), and high surgeon volume (OR 0.574; p = 0.006). BPC (OR 1.013; p = 0.044), pT3a (OR 4.832; p < 0.0001) and pT3b stage (OR 5.153; p = 0.001) were independent predictors of the risk of non-focal PSM. Surgeon volume was not a predictor of non-focal PSM (p = 0.224). Independent factors associated with the risk of BCR were baseline PSA (hazard ratio, HR 1.064; p = 0.004), BPC (HR 1.015; p = 0.027), ISUP biopsy grade group (BGG) 2/3 (HR 2.966; p 0.003) and BGG 4/5 (HR 3.122; p = 0.022) pathologic grade group 4/5 (HR 3.257; p = 0.001), pT3b (HR 2.900; p = 0.003), and non-focal PSM (HR 2.287; p = 0.012). Surgeon volume was not a predictor of BCR (p = 0.253). High surgeon volume is an independent factor that lowers the risk of focal PSM. Surgeon volume does not affect non-focal PSM and BCR. Negative as well as focal PSM are not associated with BCR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66(1):7–30

    PubMed  Google Scholar 

  2. Martini A, Gandaglia G, Briganti A (2019) What is new in robot-assisted radical prostatectomy: a narrative review. Curr Opin Urol 29(1):14–18

    PubMed  Google Scholar 

  3. Artibani W, Porcaro Antonio B, De Marco V, Cerruto Maria A, Siracusano S (2017) Management of biochemical recurrence after primary curative treatment for prostate cancer: a review. Urol Int 100(3):251–262

    PubMed  Google Scholar 

  4. Sooriakumaran P, Dev HS, Skarecky D, Ahlering T (2016) The importance of surgical margins in prostate cancer. J Surg Oncol 113(3):310–315

    PubMed  Google Scholar 

  5. Yossepowitch O, Bjartell A, Eastham JA, Graefen M, Guillonneau BD, Karakiewicz PI et al (2009) Positive surgical margins in radical prostatectomy: outlining the problem and its long-term consequences. Eur Urol 55(1):87–99

    PubMed  Google Scholar 

  6. Mottet N, Bellmunt J, Bolla M, Briers E, Cumberbatch MG, De Santis M et al (2017) EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol 71(4):618–629

    PubMed  Google Scholar 

  7. Porcaro AB, Tafuri A, Sebben M, Corsi P, Pocessali T, Pirozzi M et al (2018) Positive association between preoperative total testosterone levels and risk of positive surgical margins by prostate cancer: results in 476 consecutive patients treated only by radical prostatectomy. Urol Int 101(1):38–46

    CAS  PubMed  Google Scholar 

  8. Porcaro AB, Sebben M, Corsi P, Tafuri A, Processali T, Pirozzi M et al (2019) Risk factors of positive surgical margins after robot-assisted radical prostatectomy in high-volume center: results in 732 cases. J Robot Surg. https://doi.org/10.1007/s11701-019-00954-x

    Article  PubMed  Google Scholar 

  9. Servoll E, Vlatkovic L, Sæter T, Nesland JM, Axcrona U, Waaler G et al (2014) The length of a positive surgical margin is of prognostic significance in patients with clinically localized prostate cancer treated with radical prostatectomy. Urol Int 93(3):289–295

    PubMed  Google Scholar 

  10. Sammon JD, Trinh Q-D, Sukumar S, Ravi P, Friedman A, Sun M, et al. (eds) (2013) Risk factors for biochemical recurrence following radical perineal prostatectomy in a large contemporary series: a detailed assessment of margin extent and location. Urologic Oncology: Seminars and Original Investigations. Elsevier, Amsterdam

    Google Scholar 

  11. Lee S, Kim KB, Jo JK, Ho JN, Oh JJ, Jeong SJ et al (2016) Prognostic value of focal positive surgical margins after radical prostatectomy. Clin genitourin Cancer 14(4):e313–e319

    PubMed  Google Scholar 

  12. Epstein JI, Egevad L, Amin MB, Delahunt B, Srigley JR, Humphrey PA (2016) The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: definition of grading patterns and proposal for a new grading system. Am J Surg Pathol 40(2):244–252

    PubMed  Google Scholar 

  13. Menon M, Tewari A, Peabody J, TEAM* V (2003) Vattikuti Institute prostatectomy: technique. J Urol 169(6):2289–2292

    PubMed  Google Scholar 

  14. Briganti A, Larcher A, Abdollah F, Capitanio U, Gallina A, Suardi N et al (2012) Updated nomogram predicting lymph node invasion in patients with prostate cancer undergoing extended pelvic lymph node dissection: the essential importance of percentage of positive cores. Eur Urol 61(3):480–487

    PubMed  Google Scholar 

  15. Porcaro AB, Inverardi D, Corsi P, Sebben M, Cacciamani G, Tafuri A et al (2018) Prostate specific antigen levels and proportion of biopsy positive cores are independent predictors of upgrading patterns in low risk prostate cancer. Minerva Urol Nefrol. https://doi.org/10.23736/S0393-2249.18.03172-7

    Article  PubMed  Google Scholar 

  16. Porcaro AB, Cavicchioli F, Mattevi D, De Luyk N, Corsi P, Sebben M et al (2017) Clinical factors of disease reclassification or progression in a contemporary cohort of prostate cancer patients elected to active surveillance. Urol Int 98(1):32–39

    PubMed  Google Scholar 

  17. Porcaro AB, De Luyk N, Corsi P, Sebben M, Tafuri A, Cacciamani G et al (2016) Preoperative plasma levels of total testosterone associated with high grade pathology-detected prostate cancer: preliminary results of a prospective study in a contemporary cohort of patients. Curr Urol 10(2):72–80

    CAS  Google Scholar 

  18. Porcaro AB, de Luyk N, Corsi P, Sebben M, Tafuri A, Mattevi D et al (2017) Clinical factors predicting and stratifying the risk of lymph node invasion in localized prostate cancer. Urol Int 99(2):207–214

    CAS  PubMed  Google Scholar 

  19. Porcaro AB, Siracusano S, Luyk ND, Corsi P, Sebben M, Tafuri A et al (2018) Clinical factors stratifying the risk of tumor upgrading to high-grade disease in low-risk prostate cancer. Tumori J 104(2):111–115

    Google Scholar 

  20. Montorsi F, Wilson TG, Rosen RC, Ahlering TE, Artibani W, Carroll PR et al (2012) Best practices in robot-assisted radical prostatectomy: recommendations of the pasadena consensus panel. Eur Urol 62(3):368–381

    PubMed  Google Scholar 

  21. Kumar A, Tandon S, Samavedi S, Mouraviev V, Bates AS, Patel VR (2016) Current status of various neurovascular bundle-sparing techniques in robot-assisted radical prostatectomy. J Robot Surg 10(3):187–200

    PubMed  Google Scholar 

  22. Freire MP, Weinberg AC, Lei Y, Soukup JR, Lipsitz SR, Prasad SM et al (2009) Anatomic bladder neck preservation during robotic-assisted laparoscopic radical prostatectomy: description of technique and outcomes. Eur Urol 56(6):972–980

    PubMed  Google Scholar 

  23. Atug F, Castle EP, Srivastav SK, Burgess SV, Thomas R, Davis R (2006) Positive surgical margins in robotic-assisted radical prostatectomy: impact of learning curve on oncologic outcomes. Eur Urol 49(5):866–871 (discussion 71–2)

    PubMed  Google Scholar 

  24. Dripps RD (1961) The role of anesthesia in surgical mortality. JAMA 178(3):261

    CAS  PubMed  Google Scholar 

  25. Dindo D, Demartines N, Clavien P-A (2004) Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 240(2):205

    PubMed  PubMed Central  Google Scholar 

  26. Srigley JR, Humphrey PA, Amin MB, Chang SS, Egevad L, Epstein JI et al (2009) Protocol for the examination of specimens from patients with carcinoma of the prostate gland. Arch Pathol Lab Med 133(10):1568–1576

    PubMed  Google Scholar 

  27. Ficarra V, Novara G, Secco S, D'Elia C, Boscolo-Berto R, Gardiman M et al (2009) Predictors of positive surgical margins after laparoscopic robot assisted radical prostatectomy. J Urol 182(6):2682–2688

    PubMed  Google Scholar 

  28. Patel VR, Coelho RF, Rocco B, Orvieto M, Sivaraman A, Palmer KJ et al (2011) Positive surgical margins after robotic assisted radical prostatectomy: a multi-institutional study. J Urol 186(2):511–517

    PubMed  Google Scholar 

  29. Coelho RF, Chauhan S, Orvieto MA, Palmer KJ, Rocco B, Patel VR (2010) Predictive factors for positive surgical margins and their locations after robot-assisted laparoscopic radical prostatectomy. Eur Urol 57(6):1022–1029

    PubMed  Google Scholar 

  30. Tholomier C, Bienz M, Hueber PA, Trinh QD, Hakim AE, Alhathal N et al (2014) Oncological and functional outcomes of 722 robot-assisted radical prostatectomy (RARP) cases: The largest Canadian 5-year experience. Can Urol Assoc J = Journal de l'Association des urologues du Canada 8(5–6):195–201

    PubMed  Google Scholar 

  31. Rajan P, Hagman A, Sooriakumaran P, Nyberg T, Wallerstedt A, Adding C et al (2018) Oncologic outcomes after robot-assisted radical prostatectomy: a large European single-centre cohort with median 10-year follow-up. Eur Urol Focus 4(3):351–359

    PubMed  Google Scholar 

  32. Antonelli A, Sodano M, Peroni A, Mittino I, Palumbo C, Furlan M et al (2017) Positive surgical margins and early oncological outcomes of robotic vs open radical prostatectomy at a medium case-load institution. Minerva urologica e nefrologica = Ital J Urol Nephrol 69(1):63–68

    Google Scholar 

  33. Jo JK, Hong SK, Byun SS, Zargar H, Autorino R, Lee SE (2017) Positive surgical margin in robot-assisted radical prostatectomy: correlation with pathology findings and risk of biochemical recurrence. Minerva urologica e nefrologica = Ital J Urol Nephrol 69(5):493–500

    Google Scholar 

  34. Porcaro A, Tafuri A, Sebben M, Processali T, Pirozzi M, Amigoni N et al (2019) Body Mass Index and prostatic specific antigen are independent predictors of multiple prostate cancer lymph node metastases in Caucasian patients undergoing robot assisted radical prostatectomy and extended pelvic lymph node dissection. Minerva Urol Nefrol 71(5):516–523

    PubMed  Google Scholar 

  35. Porcaro AB, Tafuri A, Sebben M, Processali T, Pirozzi M, Amigoni N et al (2019) High body mass index predicts multiple prostate cancer lymph node metastases after radical prostatectomy and extended pelvic lymph node dissection. Asian J Androl. https://doi.org/10.4103/aja.aja_70_19

    Article  PubMed Central  Google Scholar 

  36. Porcaro AB, Sebben M, Tafuri A, de Luyk N, Corsi P, Processali T et al (2019) Body mass index is an independent predictor of Clavien–Dindo grade 3 complications in patients undergoing robot assisted radical prostatectomy with extensive pelvic lymph node dissection. J Robot Surg 13(1):83–89

    PubMed  Google Scholar 

  37. van Roermund JGH, Bol GH, Alfred Witjes J, Ruud Bosch JLH, Kiemeney LA, van Vulpen M (2009) Periprostatic fat measured on computed tomography as a marker for prostate cancer aggressiveness. World J Urol 28(6):699–704

    PubMed  PubMed Central  Google Scholar 

  38. Steinsvik EA, Axcrona K, Angelsen A, Beisland C, Dahl A, Eri LM et al (2013) Does a surgeon's annual radical prostatectomy volume predict the risk of positive surgical margins and urinary incontinence at one-year follow-up? Findings from a prospective national study. Scand J Urol 47(2):92–100

    PubMed  Google Scholar 

  39. Leow JJ, Leong EK, Serrell EC, Chang SL, Gruen RL, Png KS et al (2018) Systematic review of the volume-outcome relationship for radical prostatectomy. Eur Urol Focus 4(6):775–789

    PubMed  Google Scholar 

  40. Hu JC, Wang Q, Pashos CL, Lipsitz SR, Keating NL (2008) Utilization and outcomes of minimally invasive radical prostatectomy. J Clin Oncol 26(14):2278–2284

    PubMed  Google Scholar 

  41. Porcaro AB, De Luyk N, Corsi P, Sebben M, Tafuri A, Processali T et al (2017) Clinical factors predicting bilateral lymph node invasion in high-risk prostate cancer. Urol Int 99(4):392–399

    PubMed  Google Scholar 

  42. Porcaro AB, de Luyk N, Corsi P, Sebben M, Tafuri A, Tamanini I et al (2017) Bilateral lymph node micrometastases and seminal vesicle invasion associated with same clinical predictors in localized prostate cancer. Tumori J 103(3):299–306

    Google Scholar 

  43. Hamidi N, Atmaca AF, Canda AE, Keske M, Gok B, Koc E et al (2018) Does presence of a median lobe affect perioperative complications, oncological outcomes and urinary continence following robotic-assisted radical prostatectomy? Urol J 15(5):248–255

    PubMed  Google Scholar 

  44. Jeong CW, Lee S, Oh JJ, Lee BK, Lee JK, Jeong SJ et al (2014) Quantification of median lobe protrusion and its impact on the base surgical margin status during robot-assisted laparoscopic prostatectomy. World J Urol 32(2):419–423

    PubMed  Google Scholar 

Download references

Funding

The authors did not receive financial support.

Author information

Authors and Affiliations

Authors

Contributions

ABP: project development, data analysis and interpretation, manuscript writing, and supervision. AT and MS: project development, data collection, data analysis and interpretation, and manuscript writing. PC, MP, TP, NA, RR, RB, CC, and LT: data collection. AS: language and critical revision. MB, VDeM, FM, GN, SS, MAC, AA, and WA: other (supervision and critical revision).

Corresponding author

Correspondence to Antonio Benito Porcaro.

Ethics declarations

Conflict of Interest

All authors declare that they have not conflict of interest.

Informed consent

All procedures performed in studies involving human participants were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 10 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porcaro, A.B., Tafuri, A., Sebben, M. et al. Linear extent of positive surgical margin impacts biochemical recurrence after robot-assisted radical prostatectomy in a high-volume center. J Robotic Surg 14, 663–675 (2020). https://doi.org/10.1007/s11701-019-01039-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11701-019-01039-5

Keywords

Navigation