Journal of Robotic Surgery

, Volume 7, Issue 3, pp 235–240 | Cite as

Lessons learned using the insertable robotic effector platform (IREP) for single port access surgery

  • N. Simaan
  • A. Bajo
  • A. Reiter
  • Long Wang
  • P. Allen
  • D. Fowler
Special Issue: Hamlyn Symposium 2012

Abstract

This paper presents the preliminary evaluation of a robotic system for single port access surgery. This system may be deployed through a 15-mm incision. It deploys two surgical arms and a third arm manipulating a stereo-vision module that tracks instrument location. The paper presents the design of the robot along with experiments demonstrating the capabilities of this robot. The evaluation includes use of tasks from fundamentals of laparoscopic surgery, evaluation of telemanipulation accuracy, knot tying, and vision tracking of tools.

Keywords

Single port access surgery Minimally invasive surgery Natural orifice surgery 

References

  1. 1.
    Abbott DJ, Becke C, Rothstein RI, Peine WJ (2007) Design of an endoluminal NOTES robotic system. IEEE/RSJ Int Conf Intell Robots Syst 2007:410–416Google Scholar
  2. 2.
    Kencana AP, Phee SJ, Low SC, Sun ZL, Huynh VA, Ho KY, Chung S (2008) Master and slave robotic system for natural orifice transluminal endoscopic surgery. IEEE Conf Rob Autom Mechatron 2008:296–300Google Scholar
  3. 3.
    Lehman AC, Dumpert J, Wood NA, Visty AQ, Farritor SM, Oleynikov D (2008) In vivo robotics for natural orifice transgastric peritoneoscopy. Stud Health Technol Inform 132:236–241PubMedGoogle Scholar
  4. 4.
    Harada K, Susilo E, Menciassi A, Dario P (2009) Wireless reconfigurable modules for robotic endoluminal surgery. In: IEEE international conference on robotics and automation, 2009, pp 2699–2704Google Scholar
  5. 5.
    Lee H, Choi Y, Yi B-J (2010) Stackable 4-BAR manipulator for single port access surgery. IEEE/ASME Trans Mechatron 99:1–10Google Scholar
  6. 6.
    Piccigallo M, Scarfogliero U, Quaglia C, Petroni G, Valdastri P, Menciassi A, Dario P (2010) Design of a novel bimanual robotic system for single-port laparoscopy. IEEE/ASME Trans Mechatron 15(6):871–878Google Scholar
  7. 7.
    Xu K, Zhao J, Geiger J, Shih AJ, Zheng M (2011) Design of an endoscopic stitching device for surgical obesity treatment using a N.O.T.E.S approach. In: IEEE/RSJ international conference on intelligent robots and systems, 2011, pp 961–966Google Scholar
  8. 8.
    Larkin DQ, Cooper TG, Duval EF, McGrogan A, Mohr CJ, Rosa DJ, Schena BM, Shafer DC, Williams MR (2007) Minimally invasive surgical system. U.S. Patent U.S. Patent 8182415 B22012Google Scholar
  9. 9.
    Simaan N, Xu K, Kapoor A, Kazanzides P, Flint P, Taylor R (2009) Design and integration of a telerobotic system for minimally invasive surgery of the throat. Int J Rob Res 28(9):1134–1153PubMedCrossRefGoogle Scholar
  10. 10.
    Hu T, Allen PK, Hogle NJ, Fowler DL (2009) Insertable surgical imaging device with pan, tilt, zoom, and lighting. Int J Rob Res 28(10):1373–1386CrossRefGoogle Scholar
  11. 11.
    Xu K, Goldman R, Ding J, Allen P, Fowler D, Simaan N (2009) System design of an insertable robotic effector platform for single port access (SPA) surgery. In: IEEE/RSJ international conference on intelligent robots and systems, 2009, pp 5546–5552Google Scholar
  12. 12.
    Ding J, Goldman R, Allen P, Fowler D, Simaan N (2010) Design, simulation and evaluation of kinematic alternatives for insertable robotic effectors platforms in single port access surgery. In: IEEE international conference on intelligent robots and systems, 2010, pp 1053–1058Google Scholar
  13. 13.
    Ding J, Goldman RE, Xu K, Allen PK, Fowler DL, Simaan N (2012) Design and Coordination Kinematics of an insertable robotic effectors platform for single-port access surgery. IEEE/ASME Trans Mechatron 1–13Google Scholar
  14. 14.
    Dubrowski A, Sidhu R, Park J, Carnahan H (2005) Quantification of motion characteristics and forces applied to tissues during suturing. Am J Surg 190(1):131–136PubMedCrossRefGoogle Scholar
  15. 15.
    Piccigallo M, Scarfogliero U, Quaglia C, Petroni G, Valdastri P, Menciassi A, Dario P (2010) Design of a novel bimanual robotic system for single-port laparoscopy. IEEE/ASME Trans Mechatron 15(6):871–878Google Scholar
  16. 16.
    Lehman AC, Dumpert J, Wood NA, Visty AQ, Farritor SM, Oleynikov D (2008) In vivo robotics for natural orifice transgastric peritoneoscopy. Stud Health Technol Inform 132:236–241PubMedGoogle Scholar
  17. 17.
    Kencana AP, Phee SJ, Low SC, Sun ZL, Huynh VA, Ho KY, Chung S (2008) Master and slave robotic system for natural orifice transluminal endoscopic surgery. IEEE Conf Rob Autom Mechatron 2008:296–300Google Scholar
  18. 18.
    Abbott DJ, Becke C, Rothstein RI, Peine WJ (2007) Design of an endoluminal NOTES robotic system. IEEE/RSJ Int Conf Intell Rob Syst 2007:410–416Google Scholar
  19. 19.
    Bajo A, Goldman RE, Wang L, Fowler D, Simaan N (2012) Integration and preliminary evaluation of an insertable robotic effectors platform for single port access surgery. IEEE Int Conf Rob Autom 2012:3381–3387Google Scholar
  20. 20.
    Reiter A, Allen PK (2010) An online learning approach to in vivo tracking using synergistic features. IEEE/RSJ Int Conf Intell Rob Syst 2010:3441–3446Google Scholar
  21. 21.
    Hu T, Allen PK, Hogle NJ, Fowler DL (2009) Insertable surgical imaging device with pan, tilt, zoom, and lighting. Int J Rob Res 28(10):1373–1386CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • N. Simaan
    • 1
    • 2
  • A. Bajo
    • 1
    • 2
  • A. Reiter
    • 3
  • Long Wang
    • 1
    • 2
  • P. Allen
    • 3
  • D. Fowler
    • 4
  1. 1.A.R.M.A. Laboratory, Department of Mechanical EngineeringVanderbilt UniversityNashvilleUSA
  2. 2.Vanderbilt Initiative in Surgery and Engineering (VISE)NashvilleUSA
  3. 3.Department of Computer ScienceColumbia UniversityNew York CityUSA
  4. 4.Department of SurgeryColumbia UniversityNew York CityUSA

Personalised recommendations