Advertisement

Factors determining the morphology of Cd x Hg1−x Te films in the course of molecular beam epitaxy

  • I. V. Sabinina
  • A. K. Gutakovskii
  • Yu. G. Sidorov
  • V. S. Varavin
  • A. V. Latyshev
Article
  • 9 Downloads

Abstract

Using atomic force microscopy, the dependence of the micromorphology of CdHgTe(301) films grown by molecular beam epitaxy on growth conditions and micromorphology of the buffer CdTe layer is studied. Transmission and high-resolution electron microscopy were used to reveal the interrelation between the micromorphology and microstructure of CdHgTe(301) films. It is found that the roughness of the surface of buffer CdTe layers is inherited during growth of CdHgTe films and initiates the capture of excess tellurium by macrosteps under non-optimal growth conditions, thereby leading to nucleation of growing-in macrodefects. In CdHgTe(301) films grown at the elevated temperature, a periodic wave-like profile and associated lateral modulation of the composition in the [1̄03] direction normal to the direction of profile lines [010] are observed. According to the model suggested in the study, formation of a wave-like profile and lateral modulations of the composition are caused by the character of distribution of stresses in the CdHgTe(301) film at the stage of pseudomorphic growth on the buffer CdTe layer.

Keywords

Buffer Layer Molecular Beam Epitaxy Atomic Force Microscopy Image Surface Investigation Neutron Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Shelling, G. Springholz, and F. Scyaffler, Phys. Rev. Lett. 83 (5), 995 (1999).Google Scholar
  2. 2.
    C. Shelling, G. Springholz, and F. Scyaffler, Thin Solid Films 369, 1 (2000).Google Scholar
  3. 3.
    G. Apostolopoulos, J. Herfort, L. Daweritz, and K. H. Ploog, Phys. Rev. Lett. 84 (15), 3358 (2000).Google Scholar
  4. 4.
    Y. H. Phang, C. Teichert, M. G. Lagally, et al., Phys. Rev. B 50 (19), 14435 (1994).Google Scholar
  5. 5.
    F. Liu and M. G. Lagally, Surf. Sci. 386, 169 (1997).Google Scholar
  6. 6.
    J. E. Guyer, S. A. Barnett, and P. W. Voorhees, J. Cryst. Growth 217, 1 (2000).Google Scholar
  7. 7.
    V. S. Varavin, V. S. Dvoretsky, V. I. Liberman, et al., J. Cryst. Growth 159, 1161 (1996).Google Scholar
  8. 8.
    I. V. Sabinina, A. K. Gutakovsky, Yu. G. Sidorov, and A. V. Latyshev, J. Cryst. Growth 274, 339 (2005).Google Scholar
  9. 9.
    I. V. Sabinina, A. K. Gutakovsky, Yu. G. Sidorov, and A. V. Latyshev, Poverkhnost. Rentgen., Sinkhrotron. Neitron. Issled. 11, 6 (2005).Google Scholar
  10. 10.
    M. V. Yakushev, A. Babenko, D. Ikusov, et al., Proc. SPIE–Int. Soc. Opt. Eng. 5957, 590 (2005).Google Scholar
  11. 11.
    I. V. Sabinina, A. K. Gutakovsky, Yu. G. Sidorov, et al., Pisma Zh. Eksp. Tekh. Fiz. 82 (5), 326 (2005) [JETP Lett. 82, 292 (2005)].Google Scholar
  12. 12.
    P. A. Bakhtin, V. S. Varavin, S. A. Dvoretskii, et al., Avtometriya 2, 83 (2002).Google Scholar
  13. 13.
    P. A. Bakhtin, V. S. Varavin, S. A. Dvoretskii, et al., Fiz. Tekh. Poluprovodn. 37, 1369 (2003) [Semiconductors 37 (11), 1331 (2003)].Google Scholar
  14. 14.
    J. E. Guyer, S. A. Barnett, and P. W. Voorhees, J. Cryst. Growth 217, 1 (2000).Google Scholar
  15. 15.
    P. R. Berger, L. Chang, P. Bhattacharya, and J. Singh, Appl. Phys. Lett. 53, 684 (1988).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • I. V. Sabinina
    • 1
  • A. K. Gutakovskii
    • 1
  • Yu. G. Sidorov
    • 1
  • V. S. Varavin
    • 1
  • A. V. Latyshev
    • 1
  1. 1.Institute of Semiconductor Physics, Siberian DivisionRussian Academy of SciencesNovosibirskRussia

Personalised recommendations