Advertisement

Surface morphology of the Si(310) substrate used for molecular beam epitaxy of CdHgTe: I. Clean Si(310) surface

  • M. V. Yakushev
  • D. V. Brunev
  • K. N. Romanyuk
  • A. E. Dolbak
  • A. S. Deryabin
  • L. V. Mironova
  • Yu. G. Sidorov
Article
  • 13 Downloads

Abstract

The effect of vacuum annealing on the morphology of hydrogenated and oxidized Si(310) surfaces is investigated by scanning tunnel microscopy, reflection high-energy electron diffraction, and low-energy electron diffraction. It is found that after desorption of a passivating coating, the surface has a strongly developed profile formed preferentially by steps two monolayers in height. Annealing at a temperature of 900±15°C with subsequent abrupt cooling leads to faceting of the surface by (510) planes. The presence of steps two monolayers in height on the Si(310) surface allows one to use Si crystals oriented along the (310) plane as the substrate for heteroepitaxy of the II–VI compounds.

Keywords

Scanning Tunnel Microscopy Surface Investigation Neutron Technique Scanning Tunnel Microscopy Image Antiphase Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. S. Varavin, S. A. Dvoretsky, V. I. Liberman, et al., Thin Solid Films 306, 253 (1997).Google Scholar
  2. 2.
    M. V. Yakushev, Yu. G. Sidorov, and L. V. Sokolov, Poverkhnost. Rentgen. Sinkhrotron. Neitron. Issled. 10, 35 (1996).Google Scholar
  3. 3.
    R. J. Koestner and H. F. Schaake, J. Vac. Sci. Technol. A 6 (4), 2834 (1988).Google Scholar
  4. 4.
    Y. S. Ryu, B. S. Song, T. W. Kang, and T. W. Kim, J. Mater. Sci. 39, 1147 (2004).Google Scholar
  5. 5.
    D. Martrou and N. Magnea, Thin Solid Films 367, 48 (2000).Google Scholar
  6. 6.
    Yu. G. Sidorov, S. A. Dvoretsky, V. S. Varavin, et al., Fiz. Tekh. Poluprovodn. 35 (9), 1092 (2001) [Semiconductors 35, 1045 (2001)].Google Scholar
  7. 7.
    Z. Gai, W. S. Yang, R. G. Zhao, and T. Sakurai, Phys. Rev. B 59, 13003 (1999).Google Scholar
  8. 8.
    R. G. Zhao, Z. Gai, W. Li, et al., Surf. Sci. 517, 98 (2002).Google Scholar
  9. 9.
    W. Kern and D. A. Puotinen, RCA Rev. 31, 187 (1970).Google Scholar
  10. 10.
    D. B. Fenner, D. K. Biegelsen, and R. D. Bringans, J. Appl. Phys. 66, 419 (1989).Google Scholar
  11. 11.
    V. F. Kuleshov, Yu. A. Kukharenko, S. A. Fridrikhov, et al., Spectroscopy and Diffraction of Electrons at Investigation of Solid Surface (Nauka, Moscow, 1985) [in Russian].Google Scholar
  12. 12.
    S. N. Filimonov and B. Voigtlander, Surf. Sci. 549, 31 (2004).Google Scholar
  13. 13.
    C. V. Ciobanu, V. B. Shenoy, C. Z. Wang, and K. M. Ho, Surf. Sci. 544, L715 (2003).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • M. V. Yakushev
    • 1
  • D. V. Brunev
    • 1
  • K. N. Romanyuk
    • 1
  • A. E. Dolbak
    • 1
  • A. S. Deryabin
    • 1
  • L. V. Mironova
    • 1
  • Yu. G. Sidorov
    • 1
  1. 1.Institute of Semiconductor Physics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations