Advertisement

Investigating the surface morphology and magnetic contrast of epitaxial ferromagnetic structures

  • L. A. Fomin
  • I. V. Malikov
  • V. Yu. Vinnichenko
  • K. M. Kalach
  • S. V. Pyatkin
  • G. M. Mikhailov
Article
  • 13 Downloads

Abstract

The surface morphology of nickel thin films is investigated via atomic force microscopy. The multistage film growth mechanism is found to be dependent on substrate temperature and film thickness. It is shown that conduction electron scattering from the irregularities of the outer and inner surfaces of structures are influenced by the surface morphology and determined by an integrated contribution of the surface’s fluctuation density spectrum. The morphology influence can be decreased under certain growth conditions so that the residual mean free path of conduction electrons can reach 1000 nm, exceeding the film thickness. Epitaxial nanostructures with high electron mobility have been fabricated. Investigation of their magnetic structure has shown that their magnetic domain dimensions are less than the residual mean free path of electrons determined by the surface morphology.

Keywords

Substrate Temperature Atomic Force Microscopy Image Surface Investigation Neutron Technique High Electron Mobility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Fishman and D. Calecki, Phys. Rev. B 43 (14), 11581 (1991).Google Scholar
  2. 2.
    G. Palasantzas, Phys. Rev. B 48 (19), 14472 (1993).Google Scholar
  3. 3.
    J. Barnas and Y. Bruynseraede, Phys. Rev. B 53 (9), 5449 (1996).Google Scholar
  4. 4.
    H.-N. Yang, G.-C. Wang, and T.-M. Lu, Phys. Rev. B 51 (24), 17932 (1995).Google Scholar
  5. 5.
    G. Palasantzas, Y.-P. Xhao, G.-C. Wang, et al., Phys. Rev. B 61 (16), 11109 (2000).Google Scholar
  6. 6.
    G. M. Mikhailov, Phys. of Low-Dimens. Struct. 1 (2), 1 (2002).Google Scholar
  7. 7.
    L. A. Fomin, I. V. Malikov, A. V. Chernykh, et al., New Nanotechnology Research, Ed. by J. P. Reece (Nova- Science Publ., 2006).Google Scholar
  8. 8.
    M. L. Roukes, T. J. Thornton, A. Scherer, et al., Electronic Properties of Multilayers and Low-Dimensional Semiconductor Structures, Ed. by J. M. Chamberlain et al. (Plenum Press, London, 1990), p. 95.Google Scholar
  9. 9.
    T. J. Thornton, M. L. Roukes, A. Scherer, et al., Quantum Coherence in Mesoscopic System, Ed. by B. Kramer (Plenum Press, New York, 1991).Google Scholar
  10. 10.
    G. Palasantzas and J. Barnas, Phys. Rev. B 56 (12), 7726 (1997).Google Scholar
  11. 11.
    I. V. Malikov, L. A. Fomin, and G. M. Mikhailov, in Nanophysics and Nanoelectronics, Proc. of 9th Symposium, Nizhnii Novgorod, 25–29 March, 2005 (Institut Fiz. Mikrostruktur RAN, Nizh. Novgorod, 2005), p. 186.Google Scholar
  12. 12.
    I. V. Malikov, V. Yu. Vinnichenro, L. A. Fomin, et al., in Nanophysics and Nanoelectronics, Proc. of 10th Symposium, Nizhnii Novgorod, 3–17 March, 2006 (Institut Fiz. Mikrostruktur RAN, Nizh. Novgorod, 2006), p. 289.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • L. A. Fomin
    • 1
  • I. V. Malikov
    • 1
  • V. Yu. Vinnichenko
    • 1
  • K. M. Kalach
    • 1
  • S. V. Pyatkin
    • 1
  • G. M. Mikhailov
    • 1
  1. 1.Institute of Microelectronics Technology and High Purity MaterialsRussian Academy of SciencesChernogolovka, Moscow RegionRussia

Personalised recommendations