Advertisement

Phase composition diagnostics of surfaces, thin films, and interfaces by Auger electron spectroscopy

  • V. G. Beshenkov
  • A. F. Vyatkin
  • A. G. Znamenskii
  • V. A. Marchenko
Article
  • 21 Downloads

Abstract

The methods of phase composition diagnostics of materials by Auger spectra, developed in IMT RAS over a number of years, are presented. Examples of their use are generally in the determination of phase depth profiles. However, the considered methods can be also used for the composition diagnostics of small size objects (nanostructures) under conditions of significant noisiness of the Auger spectra and when the studied objects probably leave an analyzed region.

Keywords

Surface Investigation Neutron Technique Auger Spectrum Auger Peak Auger Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. W. Gaarenstroom, Appl. Surf. Sci. 7, 7 (1981).Google Scholar
  2. 2.
    V. Atzrodt and H. Lange, Phys. Status Solidi A 79, 489 (1983).Google Scholar
  3. 3.
    J. S. Solomon, Surf. Interface Anal. 10, 75 (1987).Google Scholar
  4. 4.
    R. Vidal and J. Ferron, Appl. Surf. Sci. 31, 263 (1988).Google Scholar
  5. 5.
    S. A. Aivazyan, V. M. Buchshtaber, I. S. Enyukov, and L. D. Meshalkin, Applied Statistics: Classification and Reduction of Dimensionality (Finansy i Statistika, Moscow, 1989) [in Russian].Google Scholar
  6. 6.
    Handbook of Applied Statistics, Vol. 2, Ed. by E. Lloyd, et al. (Finansy i Statistika, Moscow, 1990) [in Russian].Google Scholar
  7. 7.
    E. R. Malinowski and D. G. Howery, Factor Analysis in Chemistry (Wiley, New York, 1980).Google Scholar
  8. 8.
    V. G. Beshenkov, A. G. Znamenskii, and V. I. Marchenko, Izv. Akad. Nauk, Ser. Fiz. 62 (3), 517 (1998).Google Scholar
  9. 9.
    V. G. Beshenkov, S. N. Ermolov, M. I. Karpov, and V. P. Korzhov, Poverkhnost. Rentgen. Sinkhrotr. Neitron. Issled. 1, 46 (1998).Google Scholar
  10. 10.
    Handbook of Auger Electron Spectroscopy, 3rd ed., Ed. by C. Hedberg (Physical Electronics, 1995).Google Scholar
  11. 11.
    V. G. Beshenkov, Zavod. Labor. 62 (2), 17 (1996).Google Scholar
  12. 12.
    V. G. Beshenkov, Ch. V. Kopetskii, and Yu. A. Shiyanov, Phys. Status Solidi A 114, 191 (1989).Google Scholar
  13. 13.
    K. Dovidenko, S. Oktyabrsky, A. Ivanov, et al., Physica C 185–189, 2131 (1991).Google Scholar
  14. 14.
    V. G. Beshenkov, A. G. Znamenskii, and V. I. Marchenko, Poverkhnost. Rentgen. Sinkhrotr. Neitron. Issled. 1, 59 (1998).Google Scholar
  15. 15.
    H. Guyot, L. Schmidt, R. Cinti, et al., Physica C 162–164, 1305 (1989).Google Scholar
  16. 16.
    Yu. P. Pytjev, Mathematical Methods of Experiment Interpretation (Vysshaya Shkola, Moscow, 1989) [in Russian].Google Scholar
  17. 17.
    V. G. Beshenkov, A. G. Znamenskii, and V. A. Marchenko, Izv. Akad. Nauk, Ser. Fiz. 69 (4), 498 (2005).Google Scholar
  18. 18.
    V. G. Beshenkov, A. F. Vyatkin, A. G. Znamenskii, et al., Poverkhnost. Rentgen. Sinkhrotr. Neitron. Issled. 7, 68 (2004).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • V. G. Beshenkov
    • 1
  • A. F. Vyatkin
    • 1
  • A. G. Znamenskii
    • 1
  • V. A. Marchenko
    • 1
  1. 1.Institute of Microelectronics Technology and High Purity MaterialsRussian Academy of ScienceChernogolovka, Moscow oblastRussia

Personalised recommendations