Cliometrica

, Volume 11, Issue 1, pp 93–125 | Cite as

A contribution to the analysis of historical economic fluctuations (1870–2010): filtering, spurious cycles, and unobserved component modeling

  • José Luis Cendejas
  • Félix-Fernando Muñoz
  • Nadia Fernández-de-Pinedo
Original Paper

Abstract

Time series filtering methods such as the Hodrick–Prescott (HP) filter, with a consensual choice of the smoothing parameter, eliminate the possibility of identifying long swing cycles (e.g., Kondratieff type) or, alternatively, may distort periodicities that are in fact present in the data, giving rise, for example, to spurious Kuznets-type cycles. In this paper, we propose filtering Maddison’s time series for the period 1870–2010 for a selection of developed countries using a less restrictive filtering technique that does not impose but instead estimates the cutoff frequency. In particular, we use unobserved component models that optimally estimate the smoothing parameter. Using this methodology, we identify cycles of periods, primarily in the range of 4–7 years (Juglar-type cycles), and a number of patterns of cyclical convergence. We analyze the historical processes underlying this last empirical finding: Peacetime periods, monetary arrangements, trade and investment flows, and industrial boosts are confluent forces driving the economic dynamism. After 1950, we observe a common business cycle factor that groups all economies, which is consistent with the consolidation of the so-called second globalization.

Keywords

Historical business cycles Spectral analysis Unobserved component models Maddison’s time series 

JEL Classification

C32 E32 N1 

References

  1. Adelman I (1965) Long cycles—fact or artifact? Am Econ Rev 60:443–463Google Scholar
  2. Baldwin RE, Martin Ph (1999) Two waves of globalization: superficial similarities, fundamental differences, vol 6904. NBER, CambridgeCrossRefGoogle Scholar
  3. Bergman UM, Bordo MD, Jonung L (1998) Historical evidence on business cycles: the international experience. In: Fuhrer JC, Schuh S (eds) Beyond shocks: what causes business cycles? Federal Reserve Bank of Boston, Boston, pp 65–113Google Scholar
  4. Bolt J, van Zanden JL (2013) The first update of the Maddison Project; re-estimating growth before 1820. Maddison Project URL: http://www.ggdc.net/maddison/maddison-project/publications/wp4.pdf
  5. Bolt J, van Zanden JL (2014) The Maddison Project: collaborative research on historical national accounts. Econ Hist Rev 67(3):627–651Google Scholar
  6. Bouvier J (1964) Les deux scandales de Panama. Gallimard-Julliard, ParisGoogle Scholar
  7. Bouvier J (1995) Initiation au vocabulaire et aux mécanismes économiques contemporains, XIXème–XXème siècles. Sede, ParisGoogle Scholar
  8. Box GEP, Jenkins G (1970) Time series analysis, forecasting and control. Holden Day, San FranciscoGoogle Scholar
  9. Bruland K, Smith K (2010) Knowledge flows and catching-up industrialization in the Nordic countries: the roles of patent systems. In: Odagiri H, Goto A, Sunami A, Nelson RR (eds) Intellectual property rights, development, and catch-up. Oxford University Press, Oxford, pp 63–95CrossRefGoogle Scholar
  10. Cendejas JL, Font C (2015) Convergence of inflation with a common cycle: estimating and modelling Spanish historical inflation from the 16th to the 18th centuries. Empir Econ. doi:10.1007/s00181-014-0840-8 Google Scholar
  11. Cendejas JL, Castañeda JE, Muñoz FF (2014) Business cycle, interest rate and money in the euro area: a common factor model. Econ Model. doi:10.1016/j.econmod.2014.08.001 Google Scholar
  12. Chang HJ (2008) Bad Samaritans: the guilty secrets of rich nations and the threat to global prosperity. Random House, LondonGoogle Scholar
  13. Cogley T, Nason JM (1995) Effects of the Hodrick–Prescott filter on trend and difference stationary time series: implications for business cycle research. J Econ Dyn Control 19(1–2):253–278CrossRefGoogle Scholar
  14. Craig L, García-Iglesias C (2010) Business cycles. In: Broadberry S, O’Rourke KH (eds) The Cambridge economic history of modern Europe, vol II. Cambridge University Press, CambridgeGoogle Scholar
  15. Darné O, Diebolt C (2004) Unit roots and infrequent large shocks: new international evidence on output. J Monet Econ 51:1449–1465CrossRefGoogle Scholar
  16. David T, Mach A (2007) Institutions and economic growth: the successful experience of Switzerland, 1870–1950. In: Chang Han-Joon (ed) Institutional change and economic development. United Nations University Press, Tokyo, pp 219–238Google Scholar
  17. Demeulemeester JL, Diebolt C (2011) Renouveler la science économique néoclassique? Prendre l’historicité au sérieux, AFC WP2011-3Google Scholar
  18. Diebolt C (2014) Kuznets versus Kondratieff. An essay in historical macroeconometrics. Cahiers d’Econ Polit (Pap Polit Econ) 67:81–117. doi:10.3917/cep.067.0081 Google Scholar
  19. Donzé P-Y, Marti L (2014) La Suisse et l’essor de l’industrie japonaise. SZG/RSH/RSS 64(1):45–65Google Scholar
  20. Durbin J, Koopman SJ (2001) Time series analysis by state space methods. Oxford University Press, OxfordGoogle Scholar
  21. Eichengreen B (1992) Golden fetters: the gold standard and the great depression 1919–1939. Oxford University Press, OxfordGoogle Scholar
  22. Epstein RJ (1987) A history of econometrics. North Holland, AmsterdamGoogle Scholar
  23. Feenstra RC, Inklaar R, Timmer MP (2013) The next generation of the Penn world table. www.ggdc.net/pwt
  24. Feinstein CH, Temin P, Toniolo G (2008) The World Economy between the World Wars. Oxford University Press, OxfordCrossRefGoogle Scholar
  25. Fernández de Pinedo E (2012) ¿Una recesión asimétrica de nuevo tipo? Rev Astur Econ (RAE) 46:47–60Google Scholar
  26. Fernández-de-Pinedo N, Muñoz FF (2014) Economía y conflicto: urgencias del presente y lecciones del pasado. Cuad Econ (Span J Econ Finance) 37(105):159–168. doi:10.1016/j.cesjef.2014.09.002 Google Scholar
  27. Flamant M, Singer-Kerel J (1971) Crises et recessions économiques. PUF, ParisGoogle Scholar
  28. Foreman-Peck J (2007) European historical economics and globalization. J Philos Econ I(1):23–53Google Scholar
  29. Gómez V (2001) The use of Butterworth filters for trend and cycle estimation in economic time series. J Bus Econ Stat 19(3):365–373CrossRefGoogle Scholar
  30. Gonzalo J, Muñoz FF, Santos DJ (2013) Using a rate equations approach to model world population trends. Simulation. doi:10.1177/0037549712463736 Google Scholar
  31. Granger CWJ (1966) The typical spectral shape of an economic variable. Econometrica 34(1):150–161CrossRefGoogle Scholar
  32. Harvey AC (1989) Forecasting structural time series models and the Kalman filter. Cambridge University Press, CambridgeGoogle Scholar
  33. Harvey AC (2010) The local quadratic trend model. J Forecast 29(1–2):94–108CrossRefGoogle Scholar
  34. Harvey AC, Jaeger A (1993) Detrending, stylized facts, and the business cycle. J Appl Econom 8:231–247CrossRefGoogle Scholar
  35. Harvey AC, Trimbur TM (2003) General model-based filters for extracting cycles and trends in economic time series. Rev Econ Stat 85(2):244–255CrossRefGoogle Scholar
  36. Hendry DF, Morgan MS (1995) The foundations of econometric analysis. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  37. Henning M, Enflo K, Andersson FNG (2011) Trends and cycles in regional economic growth: how spatial differences shaped the Swedish growth experience from 1860–2009. Explor Econ Hist 48(4):538–555CrossRefGoogle Scholar
  38. Hodrick RJ, Prescott EC (1997) Postwar U.S. business cycles: an empirical investigation. J Money Credit Bank 29(1):1–16CrossRefGoogle Scholar
  39. Howrey EP (1968) A spectrum analysis of the long-swing hypothesis. Int Econ Rev. doi:10.2307/2525477 Google Scholar
  40. Kindleberger ChP (1978) Manias, panics, and crashes: a history of financial crises. Macmillan, LondonCrossRefGoogle Scholar
  41. Kindleberger ChP (2006) A financial history of Western Europe. Routdledge, New YorkGoogle Scholar
  42. King RG, Rebelo ST (1993) Low frequency filtering and real business cycles. J Econ Dyn Control 17(1–2):207–231CrossRefGoogle Scholar
  43. Kitagawa G, Gersch W (1996) Smoothness priors analysis of time series. Springer, BerlinCrossRefGoogle Scholar
  44. Kuznets S (1930[1967]) Secular movements in production and prices. Their nature and their bearing upon cyclical fluctuations. Boston, Houghton Mifflin Co (Reprints of Economic Classics. Augustus M. Kelley, New York)Google Scholar
  45. Kuznets S (1961) Capital in the American economy: its formation and financing. National Bureau of Economic Research, Princeton University Press, New YorkGoogle Scholar
  46. Lavisse E, Rambaud A (1901) Histoire Générale du IVème siècle à nos jours. Le monde contemporain, 1870–1900, vol 12, A. Colin & Cie, ParisGoogle Scholar
  47. Maddison A (2001) Monitoring the World Economy: a millennial perspective. OECD, ParisCrossRefGoogle Scholar
  48. Maddison A (2007) Fluctuations in the momentum of growth within the capitalist epoch. Cliometrica. doi:10.1007/s11698-007-0007-3 Google Scholar
  49. Maddison A (2009) World population, GDP and per capita GDP, A.D. 1–2003. www.ggdc.net/maddison
  50. Metz R (2010) Filter-design and model-based analysis of trends and cycles in the presence of outliers and structural breaks. Cliometrica. doi:10.1007/s11698-009-0036-1 Google Scholar
  51. Metz R (2011) Do Kondratieff waves exist?. Cliometrica, How time series techniques can help to solve the problem. doi:10.1007/s11698-010-0057-9 Google Scholar
  52. Milanovic B (2005) Can we discern the effect of globalization on income distribution? Evidence from household surveys. World Bank Economic Rev 19(1):21–44CrossRefGoogle Scholar
  53. Mills TC (2009) Modelling trends and cycles in economic time series: historical perspective and future developments. Cliometrica. doi:10.1007/s11698-008-0031-y Google Scholar
  54. Mokyr J (2010) The enlightened economy: Britain and the industrial revolution, 1700–1850. Yale University Press, New HavenGoogle Scholar
  55. Morgan MS (1990) The history of econometric ideas. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  56. Morris I (2014) War! What is it good for?: Conflict and the progress of civilization from primates to robots. Farrar, Straus and Giroux, New YorkGoogle Scholar
  57. Nayyar D (2009) Developing countries in the World Economy: the future in the past? Paper presented at the UNU-WIDER, Annual lecture 12Google Scholar
  58. Nelson CR (1988) Spurious trend and cycle in the state space decomposition of a time series with a unit root. J Econ Dyn Control 12(2–3):475–488CrossRefGoogle Scholar
  59. Nelson CR, Kang H (1981) Spurious periodicity in inappropriately detrended time series. Econometrica 49(3):741–751CrossRefGoogle Scholar
  60. Nerlove M, Grether DM, Carvalho JL (1979) Analysis of economic time series. Academic Press, New YorkGoogle Scholar
  61. Northrup D (2005) Globalization and the great convergence: rethinking world history in the long term. J World Hist 16(3):249–267CrossRefGoogle Scholar
  62. O’Rourke K, Williamson J (1995) Open economy forces and late 19th century Scandinavian catch-up. NBER working paper no 5112Google Scholar
  63. Owyang MT, Piger J, Wall HJ (2005) Business cycle phases in U.S. States. Rev Econ Stat 87:604–616CrossRefGoogle Scholar
  64. Pedersen TM (2001) The HP filter, the Slutzky effect and the distortionary effects of filters. J Econ Dyn Control 25(8):1081–1101CrossRefGoogle Scholar
  65. Piketty T, Saez E (2006) The evolution of top incomes: a historical and international perspective. Am Econ Rev 96(2):200–205CrossRefGoogle Scholar
  66. Puig N, Castro R (2009) Patterns of international business in Spain, 1850–2009. Bus Hist Rev 83(fall):505–537CrossRefGoogle Scholar
  67. Roa MJ, Cendejas JL (2007) Crecimiento económico, estructura de edades y dividendo demográfico. WP 390. Centro de Investigación y Docencia Económicas (CIDE), Mexico, DFGoogle Scholar
  68. Sáiz P (2014) Did patents of introduction encourage technology transfer? Long-term evidence from the Spanish innovation system. Cliometrica 8(1):49–78CrossRefGoogle Scholar
  69. Sargent TJ (1979) Macroeconomic theory. Academic Press, New YorkGoogle Scholar
  70. Schumpeter JA (1939 [1989]) Business cycles. A theoretical, historical and statistical analysis of the capitalist process. Porcupine Press, Philadelphia (Reprint of the first abridged edition of 1964) Google Scholar
  71. Siegfried A (1937 [1995]) La crise britannique du XXème siècle (Paris, 1937, p 90). In: J Bouvier (ed) Initiation au vocabulaire et aux mécanismes économiques contemporains, XIXème–XXème siècles. Sede, ParisGoogle Scholar
  72. Singleton J (2007) Destruction ... and Misery: The First World War. In: MJ Oliver, DH Aldcroft (eds) Economic disasters of the twentieth century. Edward Elgar, Cheltenham, pp 9–50Google Scholar
  73. Slutzky E (1937) The summation of random causes as the source of cyclic processes. Econometrica. doi:10.2307/1907241 [Original paper in Russian: 1927] Google Scholar
  74. Stock JH, Watson MW (1989) New indexes of coincident and leading economic indicators. NBER macroeconomics annual. MIT Press, Cambridge, pp 351–394Google Scholar
  75. Stock JH, Watson MW (1991) A probability model of the coincident economic indicators. In: Lahiri K, Moore GH (eds) Leading economic indicators. New approaches and forecasting records. Cambridge University Press, New York, pp 63–85CrossRefGoogle Scholar
  76. Summers PM (2005) What caused the great moderation? Some cross-country evidence. Fed Reserve Bank Kansas City Econ Rev (Q III):5–32Google Scholar
  77. Tsay RS (2005) Analysis of financial time series, 2nd edn. Wiley, New YorkCrossRefGoogle Scholar
  78. Whittle P (1983) Prediction and regulation by linear least-squares methods, 2nd edn revised. Oxford, BlackwellGoogle Scholar
  79. Williamson J (1996) Globalization, convergence and history. J Econ Hist 56(June):277–306CrossRefGoogle Scholar
  80. Wold H (1938) A study in the analysis of stationary time series. Almqvist & Wiksell, StockholmGoogle Scholar
  81. Young PC (1984) Recursive estimation and time series analysis. Springer, BerlinCrossRefGoogle Scholar
  82. Yule GU (1927) On a method of investigating periodicities in disturbed series with special reference to Wolfer’s sunspot numbers. Philos Trans R Soc Lond Ser A 226:267–298CrossRefGoogle Scholar
  83. Zarnowitz V (1992) Business cycle: theory, history, indicators and forecasting. Studies in business cycles, vol 27. University of Chicago Press for the NBER, ChicagoCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • José Luis Cendejas
    • 1
  • Félix-Fernando Muñoz
    • 2
  • Nadia Fernández-de-Pinedo
    • 2
  1. 1.Universidad Francisco de Vitoria, Pozuelo de AlarcónMadridSpain
  2. 2.Universidad Autónoma de MadridMadridSpain

Personalised recommendations