Skip to main content
Log in

Hydrogen technologies and policies for sustainable future: a review

  • Review
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Hydrogen has recently attracted considerable attention as a promising alternative for addressing energy and environmental issues. Hydrogen is a flexible and clean energy carrier that can be used in various industries, including transportation, manufacturing, and power generation, without emitting harmful emissions. This study provides a detailed review of hydrogen technologies and policies in the context of a hydrogen economy. Hydrogen production is examined with its cost analysis and current technological challenges, in addition to the key aspects of hydrogen storage, transportation and applications. This review also provides a critical discussion of global policies and roadmaps that have been proposed or implemented to achieve a hydrogen-based future economy. These policies include funding for R&D, financial incentives, tax credits, and frameworks. Finally, two key areas that can be exploited to expedite global hydrogen adoption are proposed. First, technological challenges can be addressed by employing an integrated system approach to produce hydrogen for various applications, along with vigorous investment in research on material development in handling/storing hydrogen. Second, policies to accelerate hydrogen adoption should focus on public–private partnerships, media awareness campaigns, and the introduction of green credit scores.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AC:

Alternating current

ATR:

Autothermal reforming

BEIS:

Department for business, energy and industrial strategy

CAPEX:

Capital expenditure

CCS:

Carbon capture and storage

CCUS:

Carbon capture utilization and storage

CFRP:

Carbon fiber-reinforced plastic

CG:

Coal gasification

CGH2 :

Compressed gaseous hydrogen

DR:

Dry reformer

EU:

European Union

FCEV:

Fuel cell electric vehicle

Ff:

Fossil fuel

GHR:

Gas heated reformer

HE:

Hydrogen economy

Hf:

Hydrogen fuel

IEA:

International Energy Agency

ISO:

International Organization for Standardization

LCOH:

Levelized cost of hydrogen

LF:

Load factor

LH2 :

liquid hydrogen

MH:

Metal hydride

MOFs:

Metal organic frameworks

OPEX:

Operating expenditure

PEC:

Photoelectrochemical cells

PO:

Partial oxidation

PV:

Photovoltaics

R&D:

Research and development

REMIND:

Regional Model of Investment and Development

RES:

Renewable energy system

RT:

Room temperature

SAF:

Sustainable aviation fuel

SMR:

Steam methane reforming

SOEC:

Solid oxide electrolyzer cell

SR:

Steam reformer

TCO:

Total cost of ownership

ZEBRA:

Zero-Emission Building Research Alliance

ZEVs:

Zero-emission vehicles

ZIFs:

Zeolitic imidazolate frameworks

References

  • Abe JO, Popoola A, Ajenifuja E, Popoola OM (2019) Hydrogen energy, economy and storage: review and recommendation. Int J Hydrogen Energy 44(29):15072–15086

    Article  CAS  Google Scholar 

  • Acharya S, Padhi D, Parida K (2020) Visible light driven LaFeO3 nano sphere/RGO composite photocatalysts for efficient water decomposition reaction. Catal Today 353:220–231

    Article  CAS  Google Scholar 

  • Ajanovic A (2008) On the economics of hydrogen from renewable energy sources as an alternative fuel in transport sector in Austria. Int J Hydrogen Energy 33(16):4223–4234

    Article  CAS  Google Scholar 

  • Alzoubi A (2021) Renewable green hydrogen energy impact on sustainability performance. Int J Comput Inf Manuf (IJCIM) 1(1)

  • Amin M et al (2022) Hydrogen production through renewable and non-renewable energy processes and their impact on climate change. Int J Hydrogen Energy 47(77):33112–33134

    Article  CAS  Google Scholar 

  • Anstrom J (2014) Hydrogen as a fuel in transportation. In: Advances in hydrogen production, storage and distribution. Elsevier, pp 499–524

  • Aslannezhad M et al (2023) A review of hydrogen/rock/brine interaction: implications for hydrogen geo-storage. Prog Energy Combust Sci 95:101066

    Article  Google Scholar 

  • Aziz M (2021) Liquid hydrogen: a review on liquefaction, storage, transportation, and safety. Energies 14(18):5917

    Article  CAS  Google Scholar 

  • B. Energy (2019) BP Energy Outlook 2019 Edition. In: BP Energy Outlook, vol 73

  • Balat M (2008) Potential importance of hydrogen as a future solution to environmental and transportation problems. Int J Hydrogen Energy 33(15):4013–4029

    Article  CAS  Google Scholar 

  • Ball M, Weeda M (2015) The hydrogen economy–vision or reality? Int J Hydrogen Energy 40(25):7903–7919

    Article  CAS  Google Scholar 

  • Barbir F (2009) Transition to renewable energy systems with hydrogen as an energy carrier. Energy 34(3):308–312

    Article  CAS  Google Scholar 

  • Brumfiel G (2003) Hydrogen cars fuel debate on basic research. Nature 422(6928):104–105

    Article  CAS  PubMed  Google Scholar 

  • Burdon R, Palmer G, Chakraborty S (2019) National hydrogen strategy submission. Energy Transition Hub, Canberra, Australia, pp 1–23

  • Burton N, Padilla R, Rose A, Habibullah H (2021) Increasing the efficiency of hydrogen production from solar powered water electrolysis. Renew Sustain Energy Rev 135:110255

    Article  CAS  Google Scholar 

  • Cebolla RO, Navas C (2019) Supporting hydrogen technologies deployment in EU regions and member states: the Smart Specialisation Platform on Energy (S3PEnergy). Int J Hydrogen Energy 44(35):19067–19079

    Article  Google Scholar 

  • Cerniauskas S, Junco AJC, Grube T, Robinius M, Stolten D (2020) Options of natural gas pipeline reassignment for hydrogen: cost assessment for a Germany case study. Int J Hydrogen Energy 45(21):12095–12107

    Article  CAS  Google Scholar 

  • Choi H, Woo J (2022) Investigating emerging hydrogen technology topics and comparing national level technological focus: patent analysis using a structural topic model. Appl Energy 313:118898

    Article  CAS  Google Scholar 

  • Clark W, Bradshaw T (2004) Agile energy systems. Global Lessons from the California Energy Crisis

  • Darkrim FL, Malbrunot P, Tartaglia GP (2002) Review of hydrogen storage by adsorption in carbon nanotubes. Int J Hydrogen Energy 27(2):193–202

    Article  CAS  Google Scholar 

  • Davoodabadi A, Mahmoudi A, Ghasemi H (2021) The potential of hydrogen hydrate as a future hydrogen storage medium. Iscience 24(1):101907

    Article  CAS  PubMed  Google Scholar 

  • Dawood F, Anda M, Shafiullah G (2020a) Hydrogen production for energy: an overview. Int J Hydrogen Energy 45(7):3847–3869

    Article  CAS  Google Scholar 

  • Dawood F, Shafiullah G, Anda M (2020b) A hover view over Australia’s Hydrogen Industry in recent history: the necessity for a Hydrogen Industry Knowledge-Sharing Platform. Int J Hydrogen Energy 45(58):32916–32939

    Article  CAS  Google Scholar 

  • Dillon A, Heben M (2001) Hydrogen storage using carbon adsorbents: past, present and future. Appl Phys A 72:133–142

    Article  CAS  Google Scholar 

  • Dincer I (2012) Green methods for hydrogen production. Int J Hydrogen Energy 37(2):1954–1971

    Article  CAS  Google Scholar 

  • Dincer I, Acar C (2015) Review and evaluation of hydrogen production methods for better sustainability. Int J Hydrogen Energy 40(34):11094–11111

    Article  CAS  Google Scholar 

  • Dincer I, Acar C (2017) Innovation in hydrogen production. Int J Hydrogen Energy 42(22):14843–14864

    Article  CAS  Google Scholar 

  • Eadson W, Northall P, Jones H (2022) The UK hydrogen economy: a review of global, national and regional policy

  • Eliezer D, Eliaz N, Senkov O, Froes F (2000) Positive effects of hydrogen in metals. Mater Sci Eng A 280(1):220–224

    Article  Google Scholar 

  • Ersoz A, Olgun H, Ozdogan S (2006) Reforming options for hydrogen production from fossil fuels for PEM fuel cells. J Power Sources 154(1):67–73

    Article  CAS  Google Scholar 

  • Fellay C, Dyson PJ, Laurenczy G (2008) A viable hydrogen-storage system based on selective formic acid decomposition with a ruthenium catalyst. Angew Chem Int Ed 47(21):3966–3968

    Article  CAS  Google Scholar 

  • Fisch-Romito V, Guivarch C, Creutzig F, Minx JC, Callaghan MW (2021) Systematic map of the literature on carbon lock-in induced by long-lived capital. Environ Res Lett 16(5):053004

    Article  CAS  Google Scholar 

  • Flynn R, Bellaby P, Ricci M (2006) Risk perception of an emergent technology: the case of hydrogen energy

  • Frowijn LS, van Sark WG (2021) Analysis of photon-driven solar-to-hydrogen production methods in the Netherlands. Sustainable Energy Technol Assess 48:101631

    Article  Google Scholar 

  • Goddard WA, Han SS (2009) Doped metal organic frameworks for reversible H2 storage at ambient temperature. ed: Google Patents

  • Goltsov VA, Veziroglu TN (2001) From hydrogen economy to hydrogen civilization. Int J Hydrogen Energy 26(9):909–915

    Article  CAS  Google Scholar 

  • Guy K (2000) The hydrogen economy. Process Saf Environ Prot 78(4):324–327

    Article  CAS  Google Scholar 

  • H. Council (2017) How hydrogen empowers the energy transition

  • H. Council (2020) [Online]. Available: https://hydrogencouncil.com/wp-content/uploads/2020/01/Path-to-Hydrogen-Competitiveness_Full-Study-1.pdf

  • H. UK (2022) [Online]. Available: https://hydrogen-uk.org/wp-content/uploads/2022/12/HUK_Hydrogen-Storage-Delivering-on-the-UKs-Energy-Needs_online.pdf

  • H. J. Undertaking (2011) Fuel cells and hydrogen technologies in Europe: financial and technology outlook on the European Sector Ambition 2014–2020

  • Hariharan D et al (2019) Catalytic partial oxidation reformation of diesel, gasoline, and natural gas for use in low temperature combustion engines. Fuel 246:295–307

    Article  CAS  Google Scholar 

  • Hassan Q et al (2023) Renewable energy-to-green hydrogen: a review of main resources routes, processes and evaluation. Int J Hydrogen Energy

  • Heinemann N et al (2021) Enabling large-scale hydrogen storage in porous media–the scientific challenges. Energy Environ Sci 14(2):853–864

    Article  CAS  Google Scholar 

  • Hermesmann M, Müller T (2022) Green, turquoise, blue, or grey? Environmentally friendly hydrogen production in transforming energy systems. Prog Energy Combust Sci 90:100996

    Article  Google Scholar 

  • Hirscher M, Züttel A, Borgschulte A, Schlapbach L (2009) Handbook of hydrogen storage. Ceramic Trans 202

  • I. Report (2022) Global Hydrogen Review 2022. IEA, Paris. [Online]. Available: https://www.iea.org/reports/global-hydrogen-review-2022

  • Ishaq H, Dincer I, Crawford C (2022) A review on hydrogen production and utilization: challenges and opportunities. Int J Hydrogen Energy 47(62):26238–26264

    Article  CAS  Google Scholar 

  • Ishfaq HA, Masaud Z, Hassan MH, Muhammad HA, Khan MZ (2022) Hydrogen and fuel cells. In: Handbook of energy transitions, vol 44, no 29. p 167

  • Jain I (2009) Hydrogen the fuel for 21st century. Int J Hydrogen Energy 34(17):7368–7378

    Article  CAS  Google Scholar 

  • Ji M, Wang J (2021) Review and comparison of various hydrogen production methods based on costs and life cycle impact assessment indicators. Int J Hydrogen Energy 46(78):38612–38635

    Article  CAS  Google Scholar 

  • Jiang C, Moniz SJ, Wang A, Zhang T, Tang J (2017) Photoelectrochemical devices for solar water splitting–materials and challenges. Chem Soc Rev 46(15):4645–4660

    Article  CAS  PubMed  Google Scholar 

  • Joshi AS, Dincer I, Reddy BV (2016) Effects of various parameters on energy and exergy efficiencies of a solar thermal hydrogen production system. Int J Hydrogen Energy 41(19):7997–8007

    Article  CAS  Google Scholar 

  • Kar SK, Harichandan S, Roy B (2022) Bibliometric analysis of the research on hydrogen economy: an analysis of current findings and roadmap ahead. Int J Hydrogen Energy 47(20):10803–10824

    Article  CAS  Google Scholar 

  • Keçebaş A, Kayfeci M, Bayat M (2019) Electrochemical hydrogen generation. In: Solar hydrogen production. Elsevier, pp. 299–317

  • Kleijn R, Van der Voet E (2010) Resource constraints in a hydrogen economy based on renewable energy sources: an exploration. Renew Sustain Energy Rev 14(9):2784–2795

    Article  Google Scholar 

  • Klerke A, Christensen CH, Nørskov JK, Vegge T (2008) Ammonia for hydrogen storage: challenges and opportunities. J Mater Chem 18(20):2304–2310

    Article  CAS  Google Scholar 

  • Klontzas E, Tylianakis E, Froudakis GE (2010) Designing 3D COFs with enhanced hydrogen storage capacity. Nano Lett 10(2):452–454

    Article  CAS  PubMed  Google Scholar 

  • Kojima Y (2019) Hydrogen storage materials for hydrogen and energy carriers. Int J Hydrogen Energy 44(33):18179–18192

    Article  CAS  Google Scholar 

  • Kotay SM, Das D (2008) Biohydrogen as a renewable energy resource—prospects and potentials. Int J Hydrogen Energy 33(1):258–263

    Article  Google Scholar 

  • Kovač A, Paranos M, Marciuš D (2021) Hydrogen in energy transition: a review. Int J Hydrogen Energy 46(16):10016–10035

    Article  Google Scholar 

  • Kumar A, Daw P, Milstein D (2021) Homogeneous catalysis for sustainable energy: hydrogen and methanol economies, fuels from biomass, and related topics. Chem Rev 122(1):385–441

    Article  PubMed  PubMed Central  Google Scholar 

  • Lattin W, Utgikar VP (2007) Transition to hydrogen economy in the United States: a 2006 status report. Int J Hydrogen Energy 32(15):3230–3237

    Article  CAS  Google Scholar 

  • Lee H et al (2005) Tuning clathrate hydrates for hydrogen storage. Nature 434(7034):743–746

    Article  CAS  PubMed  Google Scholar 

  • Lepage T, Kammoun M, Schmetz Q, Richel A (2021) Biomass-to-hydrogen: a review of main routes production, processes evaluation and techno-economical assessment. Biomass Bioenerg 144:105920

    Article  CAS  Google Scholar 

  • Luneau M et al (2017) Deactivation mechanism of Ni supported on Mg-Al spinel during autothermal reforming of model biogas. Appl Catal B 203:289–299

    Article  CAS  Google Scholar 

  • Ma Y et al (2021) High-entropy energy materials: challenges and new opportunities. Energy Environ Sci 14(5):2883–2905

    Article  Google Scholar 

  • McCay MH, Shafiee S (2020) Hydrogen: an energy carrier. In: Future energy. Elsevier, pp 475–493

  • McDowall W, Eames M (2006) Forecasts, scenarios, visions, backcasts and roadmaps to the hydrogen economy: a review of the hydrogen futures literature. Energy Policy 34(11):1236–1250

    Article  Google Scholar 

  • Melendez J et al (2017) Effect of Au addition on hydrogen permeation and the resistance to H2S on Pd-Ag alloy membranes. J Membr Sci 542:329–341

    Article  CAS  Google Scholar 

  • Milewski J, Kupecki J, Szczęśniak A, Uzunow N (2021) Hydrogen production in solid oxide electrolyzers coupled with nuclear reactors. Int J Hydrogen Energy 46(72):35765–35776

    Article  CAS  Google Scholar 

  • Mueller-Langer F, Tzimas E, Kaltschmitt M, Peteves S (2007) Techno-economic assessment of hydrogen production processes for the hydrogen economy for the short and medium term. Int J Hydrogen Energy 32(16):3797–3810

    Article  CAS  Google Scholar 

  • Muhammed NS, Haq B, Al Shehri D, Al-Ahmed A, Rahman MM, Zaman E (2022) A review on underground hydrogen storage: Insight into geological sites, influencing factors and future outlook. Energy Rep 8:461–499

  • N. grid. https://www.nationalgrid.com/stories/energy-explained/hydrogen-colour-spectrum. Accessed 10 Oct 2023

  • Nathao C, Sirisukpoka U, Pisutpaisal N (2013) Production of hydrogen and methane by one and two stage fermentation of food waste. Int J Hydrogen Energy 38(35):15764–15769

    Article  CAS  Google Scholar 

  • Nazir H et al (2020) Is the H2 economy realizable in the foreseeable future? Part I: H2 production methods. Int J Hydrogen Energy 45(27):13777–13788

    Article  CAS  Google Scholar 

  • Niaz S, Manzoor T, Pandith AH (2015) Hydrogen storage: Materials, methods and perspectives. Renew Sustain Energy Rev 50:457–469

    Article  CAS  Google Scholar 

  • O’Donnell D, Baker G, Wood G (2021) Sustainable Hydrogen: Green and Blue and the EU/UK Policy Overview. Gowling WLG, Birmingham. [Online]. Available: https://gowlingwlg.com/en/insights-resources/articles/2021/sustainable-hydrogengreen-and-blue-and-the-eu-uk/

  • Osman AI et al (2022) Hydrogen production, storage, utilisation and environmental impacts: a review. Environ Chem Lett 1–36

  • Palmer G (2018) Australia’s hydrogen future. Energy Transition Hub, Melbourne, Australia

    Google Scholar 

  • Pan L et al (2004) Microporous metal organic materials: promising candidates as sorbents for hydrogen storage. J Am Chem Soc 126(5):1308–1309

    Article  CAS  PubMed  Google Scholar 

  • Peng T et al (2023) Choice of hydrogen energy storage in salt caverns and horizontal cavern construction technology. J Energy Storage 60:106489

    Article  Google Scholar 

  • Peschel A (2020) Industrial perspective on hydrogen purification, compression, storage, and distribution. Fuel Cells 20(4):385–393

    Article  CAS  Google Scholar 

  • Pulido-Sánchez D, Capellán-Pérez Í, De Castro C, Frechoso F (2022) Material and energy requirements of transport electrification. Energy Environ Sci 15(12):4872–4910

    Article  Google Scholar 

  • Qyyum MA et al (2022) Biohydrogen production from real industrial wastewater: potential bioreactors, challenges in commercialization and future directions. Int J Hydrogen Energy 47(88):37154–37170

    Article  CAS  Google Scholar 

  • Ren J, Musyoka NM, Langmi HW, Mathe M, Liao S (2017) Current research trends and perspectives on materials-based hydrogen storage solutions: a critical review. Int J Hydrogen Energy 42(1):289–311

    Article  CAS  Google Scholar 

  • Ren X, Dong L, Xu D, Hu B (2020) Challenges towards hydrogen economy in China. Int J Hydrogen Energy 45(59):34326–34345

    Article  CAS  Google Scholar 

  • Reuß M, Grube T, Robinius M, Stolten D (2019) A hydrogen supply chain with spatial resolution: comparative analysis of infrastructure technologies in Germany. Appl Energy 247:438–453

    Article  Google Scholar 

  • Rifkin J (2002) The hydrogen economy: the creation of the worldwide energy web and the redistribution of power on earth. Penguin

  • Rissman J et al (2020) Technologies and policies to decarbonize global industry: review and assessment of mitigation drivers through 2070. Appl Energy 266:114848

    Article  CAS  Google Scholar 

  • Rivard E, Trudeau M, Zaghib K (2019) Hydrogen storage for mobility: a review. Materials 12(12):1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Said Z, Hachicha AA, Aberoumand S, Yousef BA, Sayed ET, Bellos E (2021) Recent advances on nanofluids for low to medium temperature solar collectors: energy, exergy, economic analysis and environmental impact. Prog Energy Combust Sci 84:100898

    Article  Google Scholar 

  • Sakintuna B, Lamari-Darkrim F, Hirscher M (2007) Metal hydride materials for solid hydrogen storage: a review. Int J Hydrogen Energy 32(9):1121–1140

    Article  CAS  Google Scholar 

  • Sánchez-Bastardo N, Schlögl R, Ruland H (2021) Methane pyrolysis for zero-emission hydrogen production: a potential bridge technology from fossil fuels to a renewable and sustainable hydrogen economy. Ind Eng Chem Res 60(32):11855–11881

    Article  Google Scholar 

  • Sato T, Blomqvist H, Noréus D (2003) Attempts to improve Mg2Ni hydrogen storage by aluminium addition. J Alloy Compd 356:494–496

    Article  Google Scholar 

  • Satyapal S, Petrovic J, Read C, Thomas G, Ordaz G (2007) The US Department of Energy’s National Hydrogen Storage Project: progress towards meeting hydrogen-powered vehicle requirements. Catal Today 120(3–4):246–256

    Article  CAS  Google Scholar 

  • Schneider S, Bajohr S, Graf F, Kolb T (2020) State of the art of hydrogen production via pyrolysis of natural gas. ChemBioEng Rev 7(5):150–158

    Article  CAS  Google Scholar 

  • Sikarwar VS et al (2016) An overview of advances in biomass gasification. Energy Environ Sci 9(10):2939–2977

    Article  CAS  Google Scholar 

  • Sinha RK, Chaturvedi ND (2019) A review on carbon emission reduction in industries and planning emission limits. Renew Sustain Energy Rev 114:109304

    Article  CAS  Google Scholar 

  • Staffell I et al (2019) The role of hydrogen and fuel cells in the global energy system. Energy Environ Sci 12(2):463–491

    Article  CAS  Google Scholar 

  • Strong MF (1992) Energy, environment and development. Energy Policy 20(6):490–494

    Article  Google Scholar 

  • Tarhan C, Çil MA (2021) A study on hydrogen, the clean energy of the future: hydrogen storage methods. J Energy Storage 40:102676

    Article  Google Scholar 

  • Teichmann D, Arlt W, Wasserscheid P, Freymann R (2011) A future energy supply based on Liquid Organic Hydrogen Carriers (LOHC). Energy Environ Sci 4(8):2767–2773

    Article  CAS  Google Scholar 

  • Trainham JA, Newman J, Bonino CA, Hoertz PG, Akunuri N (2012) Whither solar fuels? Curr Opin Chem Eng 1(3):204–210

    Article  CAS  Google Scholar 

  • U. BEIS (2021) [Online]. Available: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1011506/Hydrogen_Production_Costs_2021.pdf

  • Ursúa A, Barrios EL, Pascual J, San Martín I, Sanchis P (2016) Integration of commercial alkaline water electrolysers with renewable energies: limitations and improvements. Int J Hydrogen Energy 41(30):12852–12861

    Article  Google Scholar 

  • Usman MR (2022) Hydrogen storage methods: review and current status. Renew Sustain Energy Rev 167:112743

    Article  CAS  Google Scholar 

  • Uyar TS, Beşikci D (2017) Integration of hydrogen energy systems into renewable energy systems for better design of 100% renewable energy communities. Int J Hydrogen Energy 42(4):2453–2456

    Article  CAS  Google Scholar 

  • Veziroglu T (1995) International centre for hydrogen energy technologies. In: Feasibility study. Clean Energy Research Institute, University of Miami, Coral Gables

  • Veziroglu TN (2012) Conversion to hydrogen economy. Energy Procedia 29:654–656

    Article  Google Scholar 

  • Vidas L, Castro R (2021) Recent developments on hydrogen production technologies: state-of-the-art review with a focus on green-electrolysis. Appl Sci 11(23):11363

    Article  CAS  Google Scholar 

  • Wang A, van der Leun K, Peters D, Buseman M (2020) European hydrogen backbone: how a dedicated hydrogen infrastructure can be created

  • Wang Q, Macián-Juan R (2022) Thermodynamic analysis of two novel very high temperature gas-cooled reactor-based hydrogen-electricity cogeneration systems using sulfur-iodine cycle and gas-steam combined cycle. Energy 256:124671

    Article  CAS  Google Scholar 

  • Wicks G, Heung L, Schumacher R (2008) Microspheres and microworlds. Am Ceram Soc Bull 87(6):23

    CAS  Google Scholar 

  • Xueping Z et al (2019) Hydrogen storage performance of HPSB hydrogen storage materials. Chem Phys Lett 734:136697

    Article  Google Scholar 

  • Ye X et al (2009) Spontaneous high‐yield production of hydrogen from cellulosic materials and water catalyzed by enzyme cocktails. ChemSusChem: Chem Sustain Energy Mater 2(2):149–152

  • Yilanci A, Dincer I, Ozturk HK (2009) A review on solar-hydrogen/fuel cell hybrid energy systems for stationary applications. Prog Energy Combust Sci 35(3):231–244

    Article  CAS  Google Scholar 

  • Yu M, Wang K, Vredenburg H (2021) Insights into low-carbon hydrogen production methods: green, blue and aqua hydrogen. Int J Hydrogen Energy 46(41):21261–21273

    Article  CAS  Google Scholar 

  • Yusaf T et al (2023) Sustainable hydrogen energy in aviation–a narrative review. Int J Hydrogen Energy

  • Zeng K, Zhang D (2010) Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog Energy Combust Sci 36(3):307–326

    Article  CAS  Google Scholar 

  • Zhang Y, Hu G, Brown RC (2013) Life cycle assessment of the production of hydrogen and transportation fuels from corn stover via fast pyrolysis. Environ Res Lett 8(2):025001

    Article  CAS  Google Scholar 

  • Zhang F, Zhao P, Niu M, Maddy J (2016) The survey of key technologies in hydrogen energy storage. Int J Hydrogen Energy 41(33):14535–14552

    Article  CAS  Google Scholar 

  • Zhao Y, Kim Y-H, Dillon A, Heben M, Zhang S (2005) Hydrogen storage in novel organometallic buckyballs. Phys Rev Lett 94(15):155504

    Article  PubMed  Google Scholar 

  • Zhevago N, Glebov V (2007) Hydrogen storage in capillary arrays. Energy Convers Manage 48(5):1554–1559

    Article  CAS  Google Scholar 

  • Zhou Y, Zu XT, Gao F, Nie J, Xiao H (2009) Adsorption of hydrogen on boron-doped graphene: a first-principles prediction. J Appl Phys 105(1):014309

    Article  Google Scholar 

Download references

Funding

Authors greatly acknowledge the European Regional Development Funding Authority for their financial support (No. 34R17P02147).

Author information

Authors and Affiliations

Authors

Contributions

OA contributed to original draft writing. DQ contributed to conceptualization and data collection. FA contributed to funding acquisition and supervision. HS contributed to funding acquisition and project administration. EPF contributed to formal analysis and review. DSK contributed to manuscript review and editing.

Corresponding author

Correspondence to Faizan Ahmad.

Ethics declarations

Competing interests

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agbadaola, O., Qadir, D., Ahmad, F. et al. Hydrogen technologies and policies for sustainable future: a review. Chem. Pap. (2024). https://doi.org/10.1007/s11696-024-03403-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11696-024-03403-8

Keywords

Navigation