Skip to main content

Advertisement

Log in

Effect of silver nanoparticles prepared by green chemistry on the photovoltaic properties of zinc phthalocyanine

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The use of silver nanoparticles (AgNPs) produced from sustainable resources to improve photovoltaic properties of dye-sensitized solar cells is gaining interest due to the growing demand for clean and green energy sources. In this study, leaf (HY) and flower (HC) extracts of Golden Grass (Helichrysum italicum) were used to produce AgNPs with a low cost and easy method. The enhancement in power conversion efficiency by adding AgNPs phthalocyanine produced from biomaterials was investigated. The formation of AgNPs is indicated by a strong surface plasmon resonance (SPR) at 441 nm for HY-AgNPs and 448 nm for HC-AgNPs. Spherical AgNPs were formed with an estimated diameter of 22.59 ± 0.71 nm for HY-AgNPs and 21.06 ± 0.95 nm for HC-AgNs, both with a face center cubic crystal structure. On the other hand, the zinc phthalocyanine complex designed for dye-sensitized solar cells was synthesized and characterized. At the same time, the aggregation and fluorescence properties of zinc phthalocyanine were investigated. The photovoltaic properties of the phthalocyanine compound used in the study were examined without and with silver nanoparticle additives. With this doping, the power conversion efficiency percentage increased from 2.32 to 3.41 for HY-AgNPs and from 2.32 to 2.92 for HC-AgNPs. Evaluation of the results reveals that the phthalocyanine compound gains more efficient photovoltaic properties with the doping of AgNPs for dye-sensitized solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ağirtaş MS, Güngördü Solğun D, Yildiko Ü, Özkartal A (2020) Design of novel substituted phthalocyanines; synthesis and fluorescence, DFT, photovoltaic properties. Turk J Chem 44:1574–1586. https://doi.org/10.3906/kim-2007-40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed S, Ahmad M, Swami BL, Ikram S (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7(1):17–28. https://doi.org/10.1016/j.jare.2015.02.007

    Article  CAS  PubMed  Google Scholar 

  • Alahmadi TA, Pugazhendhi A (2021) Green synthesis of silver nanoparticles from aqueous extract of Ctenolepis garcini L. and assess their possible biological applications. Process Biochem 107:91–99. https://doi.org/10.1016/j.procbio.2021.05.008

    Article  CAS  Google Scholar 

  • AL-Rousan N, Isa NAM, Desa MKM (2018) Advances in solar photovoltaic tracking systems: a review. Renew Sustain Energy Rev 82:2548–2569

    Article  Google Scholar 

  • Anand K, Kaviyarasu K, Muniyasamy S, Roopan SM, Gengan RM, Chuturgoon AA (2017) Biosynthesis of silver nanoparticles using agroforestry residue and their catalytic degradation for sustainable waste management. J Cluster Sci 28(4):2279–2291

    Article  CAS  Google Scholar 

  • Chandra H, Kumari P, Bontempi E, Yadav S (2020) Medicinal plants: treasure trove for green synthesis of metallic nanoparticles and their biomedical applications. Biocatal Agric Biotechnol 24:101518

    Article  Google Scholar 

  • Chinou IB, Roussis V, Perdetzoglou D, Loukis A (1996) Chemical and biological studies on two Helichrysum species of Greek origin. Planta Med 62:377–379

    Article  CAS  PubMed  Google Scholar 

  • Chung I, Lee B, He J, Chang RPH, Kanatzidis MG (2012) All-solid-state dye-sensitized solar cells with high efficiency. Nature 485(7399):486–489. https://doi.org/10.1038/nature11067

    Article  CAS  PubMed  Google Scholar 

  • Dave PN, Chopda LV (2014) Application of iron oxide nanomaterials for the removal of heavy metals. J Nanotechnol. https://doi.org/10.1155/2014/398569

    Article  Google Scholar 

  • Elangovan K, Elumalai D, Anupriya S, Shenbhagaraman R, Kaleena PK, Murugesan K (2015) Phyto mediated biogenic synthesis of silver nanoparticles using leaf extract of Andrographis echioides and its bio-efficacy on anticancer and antibacterial activities. J Photochem Photobiol B, Biol 151:118–124. https://doi.org/10.1016/j.jphotobiol.2015.05.015

    Article  CAS  Google Scholar 

  • Fahimirad S, Ajalloueian F, Ghorbanpour M (2019) Synthesis and therapeutic potential of silver nanomaterials derived from plant extracts. Ecotoxicol Environ Saf 168:260–278

    Article  CAS  PubMed  Google Scholar 

  • Galbany-Casals M, Blanco-Moreno JM, Garcia-Jacas N, Breitwieser I, Smissen RD (2011) Genetic variation in Mediterranean Helichrysum italicum (Asteraceae; Gnaphalieae): Do disjunct populations of subsp. microphyllum have a common origin? Plant Biol 13:678–687

    Article  CAS  PubMed  Google Scholar 

  • Garcia MA (2011) Surface plasmons in metallic nanoparticles: fundamentals and applications. J Phys D: Appl Phys 44(28):283001. https://doi.org/10.1088/0022-3727/44/28/283001

    Article  CAS  Google Scholar 

  • Ghadari R, Sabri A, Saei P-S, Kong F-T, Marques HM (2020) Phthalocyanine-silver nanoparticle structures for plasmon-enhanced dyesensitized solar cells. Sol Energy 198:283–294

    Article  CAS  Google Scholar 

  • Güngördü Solğun D, Horoz S, Ağırtaş MS (2018) Synthesis of novel tetra (4-tritylphenoxy) substituted metallophthalocyanines and investigation of their aggregation, photovoltaic, solar cell properties. Inorg Nano-Met Chem 48(10):508–514. https://doi.org/10.1080/24701556.2019.1572624

    Article  CAS  Google Scholar 

  • Güngördü Solğun D, Yıldıko Ü, Özkartal A, Ağırtaş MS (2021) Photovoltaic performance properties, DFT studies, and synthesis of (E) 3 (diphenxy) acrylic acid substituted phthalocyanine complexes. Chem Pap 75:6285–6295. https://doi.org/10.1007/s11696-021-01786-6

    Article  CAS  Google Scholar 

  • Güngördü Solğun D, Özkartal A, Ağırtaş MS (2023) Synthesis of phthalocyanine complexes carrying caffeic acid groups: increasing photovoltaic performance by doping silver nanoparticles. Energy Sour Part A Recov Utıl Envıron Effects 45(1):2240–2252. https://doi.org/10.1080/15567036.2023

    Article  Google Scholar 

  • Hellivan PJ (2009) Immortelle’s sustainable resurgence. Perfum Flavor 34:34–40

    CAS  Google Scholar 

  • Hermanto D, Ismillayli N, Fatwa DH, Zuryati UK, Muliasari H, Wirawan R, Prasetyoko D, Suprapto S (2024) Bio-mediated electrochemically synthesis of silver nanoparticles using green tea (Camellia sinensis) leaves extract and their antibacterial activity. S Afr J Chem Eng 47:136–141. https://doi.org/10.1016/j.sajce.2023.11.004

    Article  Google Scholar 

  • Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13(10):2638–2650. https://doi.org/10.1039/c1gc15386b

    Article  CAS  Google Scholar 

  • Isah KU, Jolayemi BJ, Ahmadu U, Kimpa MI, Alu N (2016) Plasmonic effect of silver nanoparticles intercalated into mesoporous betalain-sensitized-TiO2 film electrodes on photovoltaic performance of dye-sensitized solar cells. Mater Renew Sustain Energy 5:10

    Article  Google Scholar 

  • Jackson RB, Friedlingstein P, Andrew RM, Canadell JG, Le Quéré C, Peters GP (2019) Persistent fossil fuel growth threatens the Paris Agreement and planetary health. Environ Res Lett 14(12):121001. https://doi.org/10.1088/1748-9326/ab57b3

    Article  CAS  Google Scholar 

  • Kalfagiannis N, Karagiannidis PG, Pitsalidis C, Panagiotopoulos NT, Gravalidis C, Kassavetis S, Patsalas P, Logothetidis S (2012) Plasmonic silver nanoparticles for improved organic solar cells. Sol Energy Mater Sol Cells 104:165–174

    Article  CAS  Google Scholar 

  • Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131(17):6050–6051. https://doi.org/10.1021/ja809598r

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Zhang W, Uchida S, Cai L, Liu B, Ramakrishna S (2010) An efficient organic-dye-sensitized solar cell with in situ polymerized Poly(3,4-ethylenedioxythiophene) as a hole-transporting material. Adv Mater 22(20):150–155. https://doi.org/10.1002/adma.200904168

    Article  CAS  Google Scholar 

  • Liu K, Qu S, Zhang X, Tan F, Wang Z (2013) Improved photovoltaic performance of silicon nanowire/organic hybrid solar cells by incorporating silver nanoparticles. Nanoscale Res Lett 8(88):2–6

    PubMed  PubMed Central  Google Scholar 

  • Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S (2002) Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys 116(15):6755–6759. https://doi.org/10.1063/1.1462610

    Article  CAS  Google Scholar 

  • Ödemiş Ö, Özdemir S, Gonca S, Arslantaş A, Ağırtaş MS (2022) The study on biological activities of silver nanoparticles produced via green synthesis method using Salvia officinalis and Thymus vulgaris. Turk J Chem 46:1417–1428. https://doi.org/10.55730/1300-0527.3448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ojeda JJ, Dittrich M (2012) Fourier transform infrared spectroscopy for molecular analysis of microbial cells. Methods Mol Biol. https://doi.org/10.1007/978-1-61779-827-6_8

    Article  PubMed  Google Scholar 

  • Ovais M, Khalil AT, Raza A, Khan MA, Ahmad I, Islam M, Saravanan NU, Ubaid MF, Ali M, Shinwarıl K (2016) Green synthesis of silver nanoparticles via plant extracts: beginning a new era in cancer theranostics. Nanomedicine 11(23):3157–77

    Article  CAS  PubMed  Google Scholar 

  • Ramteke C, Chakrabarti T, Sarangi BK, Pandey R-A (2013) Synthesis of silver nanoparticles from the aqueous extract of leaves of ocimum sanctum for enhanced antibacterial activity. J Chem. https://doi.org/10.1155/2013/278925

    Article  Google Scholar 

  • Sauvage F, Di Fonzo F, Li Bassi A, Casari CS, Russo V, Divitini G, Ducati C, Bottani CE, Comte P, Graetzel M (2010) Hierarchical TiO2 photoanode for dye-sensitized solar cells. Nano Lett 10(7):2562–2567. https://doi.org/10.1021/nl101198b

    Article  CAS  PubMed  Google Scholar 

  • Urbani M, Ragoussi M-E, Nazeeruddin MK, Torres T (2019) Phthalocyanines for dye-sensitized solar cells. Coord Chem Rev 381:1–64

    Article  CAS  Google Scholar 

  • Yella A, Lee H-W, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MdK, Diau EW-G, Yeh C-Y, Zakeeruddin SM, Grätzel M (2011) Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science 334(6056):629–634. https://doi.org/10.1126/science.1209688

    Article  CAS  PubMed  Google Scholar 

  • Yüzeroğlu M, Keser Karaoğlan G, Gümrükçü Köse G, Erdoğmuş A (2021) Synthesis of new zinc phthalocyanines including schiff base and halogen; photophysical, photochemical, and fluorescence quenching studies. J Mol Struct 1238:130423

    Article  Google Scholar 

  • Zabat LH, Sadaoui NA, Abid M, Sekrafi H (2022) Threshold effects of renewable energy consumption by source in U.S. economy. Electr Power Syst Res 213:108669

    Article  Google Scholar 

  • Zeinidenov AK, Aimukhanov AK, Kambar DS, Ilyassov BR, Zavgorodniy, (2021) Effects of phthalocyanine nanostructure on photovoltaic performance of its polymer composite thin films. Mater Chem Phys 267:124680

    Article  CAS  Google Scholar 

  • Zheng J, Du J, Wang B, Klemes JJ, Liao Q, Liang Y (2023) A hybrid framework for forecasting power generation of multiple renewable energy sources. Renew Sust Energ Rev 172:113046

    Article  Google Scholar 

  • Zhou H, Wu L, Gao Y, Ma T (2011) Dye-sensitized solar cells using 20 natural dyes as sensitizers. J Photochem Photobiol A 219(2–3):188–194. https://doi.org/10.1016/j.jphotochem.2011.02.008

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Scientific Research Projects Unit of Van Yuzuncu Yıl University for their contributions (FDK-2022-10325).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Salih Ağırtaş.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1550 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ödemiş, Ö., Ağırtaş, M.S., Güngördü Solğun, D. et al. Effect of silver nanoparticles prepared by green chemistry on the photovoltaic properties of zinc phthalocyanine. Chem. Pap. 78, 3735–3746 (2024). https://doi.org/10.1007/s11696-024-03343-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-024-03343-3

Keywords

Navigation