Skip to main content
Log in

A promising electrochemical sensor based on gold deposited-reduced graphene oxide sheets for the detection of Cd(II) and Pb(II)

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

This study presents electrochemical-based detection of heavy metal ions in mineral water samples. The aim of this research was to design a low-cost and highly sensitive disposable sensor to quantify Cd(II) and Pb(II). To this end, we have modified a pencil graphite electrode coated with graphene oxide (GO), electrochemically reduced graphene oxide and deposited metallic Au particles using square wave anodic stripping voltammetry. The findings revealed that the combined effect of GO and activation of the surface with auric acid improved electrical conductivity, thus facilitating deposition of Cd(II) and Pb(II) onto the electrode's surface. Under optimal conditions, a linear correlation was observed between current values and the concentrations of Cd(II) and Pb(II) within the ranges of 0.6–1.6 µM and 0.4–1.6 µM, where the limit of detection values were obtained as 0.36 µM and 0.24 µM for Cd(II) and Pb(II), respectively. According to the experimental results, the developed electrode can achieve a considerably high recovery rates for detection of Cd(II) (98.5%) and Pb(II) (93.5%) in gaseous natural mineral water samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abraham J, Vasu KS, Williams CD, Gopinadhan K, Su Y, Cherian CT et al (2017) Tunable sieving of ions using graphene oxide membranes. Nat Nanotechnol 12(6):546–550

    CAS  PubMed  Google Scholar 

  • Alam AU, Howlader MM, Hu N-X, Deen MJ (2019) Electrochemical sensing of lead in drinking water using β-cyclodextrin-modified MWCNTs. Sens Actuators B Chem 296:126632

    CAS  Google Scholar 

  • Al-Gaashani R, Najjar A, Zakaria Y, Mansour S, Atieh M (2019) XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceram Int 45(11):14439–14448

    CAS  Google Scholar 

  • Awual MR (2019) Mesoporous composite material for efficient lead (II) detection and removal from aqueous media. J Environ Chem Eng 7(3):103124

    CAS  Google Scholar 

  • Baghayeri M, Alinezhad H, Fayazi M, Tarahomi M, Ghanei-Motlagh R, Maleki B (2019) A novel electrochemical sensor based on a glassy carbon electrode modified with dendrimer functionalized magnetic graphene oxide for simultaneous determination of trace Pb(II) and Cd(II). Electrochim Acta 312:80–88

    CAS  Google Scholar 

  • Bathinapatla A, Gorle G, Kanchi S, Puthalapattu RP, Ling YC (2022) An ultra-sensitive laccase/polyaziridine-bismuth selenide nanoplates modified GCE for detection of atenolol in pharmaceuticals and urine samples. Bioelectrochemistry 147:108212

    CAS  PubMed  Google Scholar 

  • Chailapakul O, Korsrisakul S, Siangproh W, Grudpan K (2008) Fast and simultaneous detection of heavy metals using a simple and reliable microchip-electrochemistry route: an alternative approach to food analysis. Talanta 74(4):683–689

    CAS  PubMed  Google Scholar 

  • Christidi S, Chrysostomou A, Economou A, Kokkinos C, Fielden PR, Baldock SJ et al (2019) Disposable injection molded conductive electrodes modified with antimony film for the electrochemical determination of trace Pb(II) and Cd(II). Sensors 19(21):4809

    PubMed  PubMed Central  Google Scholar 

  • Cui L, Wu J, Ju H (2015) Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials. Biosens Bioelectron 63:276–286

    CAS  PubMed  Google Scholar 

  • Dahaghin Z, Kilmartin PA, Mousavi HZ (2018) Simultaneous determination of lead (II) and cadmium (II) at a glassy carbon electrode modified with GO@ Fe3O4@ benzothiazole-2-carboxaldehyde using square wave anodic stripping voltammetry. J Mol Liq 249:1125–1132

    CAS  Google Scholar 

  • Dai H, Wang N, Wang D, Ma H, Lin M (2016) An electrochemical sensor based on phytic acid functionalized polypyrrole/graphene oxide nanocomposites for simultaneous determination of Cd(II) and Pb(II). Chem Eng J 299:150–155

    CAS  Google Scholar 

  • De-hua Z, Jian-sheng C, Li-li D, Tong W, Li-xin W, Da-xi L et al (2018) Study on biological toxicity response characteristics of algae chlorophyll fluorescence to herbicides. Spectrosc Spect Anal 38(9):2820–2827

    Google Scholar 

  • Dhara P, Kumar R, Binetti L, Nguyen HT, Alwis LS, Sun T et al (2019) Optical fiber-based heavy metal detection using the localized surface plasmon resonance technique. IEEE Sens J 19(19):8720–8726

    CAS  Google Scholar 

  • Dönmez KB, Çetinkaya E, Deveci S, Karadağ S, Şahin Y, Doğu M (2017) Preparation of electrochemically treated nanoporous pencil-graphite electrodes for the simultaneous determination of Pb and Cd in water samples. Anal Bioanal Chem 409:4827–4837

    PubMed  Google Scholar 

  • Finšgar M, Kovačec L (2020) Copper-bismuth-film in situ electrodes for heavy metal detection. Microchem J 154:104635

    Google Scholar 

  • Frydrych A, Jurowski K (2023) Portable X-ray fluorescence (pXRF) as a powerful and trending analytical tool for in situ food samples analysis: a comprehensive review of application-State of the art. Trends Anal Chem 166:117165

    CAS  Google Scholar 

  • Guo H-L, Wang X-F, Qian Q-Y, Wang F-B, Xia X-H (2009) A green approach to the synthesis of graphene nanosheets. ACS Nano 3(9):2653–2659

    CAS  PubMed  Google Scholar 

  • Hassan KM, Elhaddad GM, AbdelAzzem M (2019) Voltammetric determination of cadmium (II), lead (II) and copper (II) with a glassy carbon electrode modified with silver nanoparticles deposited on poly (1, 8-diaminonaphthalene). Microchim Acta 186:1–10

    CAS  Google Scholar 

  • Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339

    CAS  Google Scholar 

  • Jabariyan S, Zanjanchi MA (2019) Colorimetric detection of cadmium ions using modified silver nanoparticles. Appl Phys A 125:1–10

    Google Scholar 

  • Jin H, Zhang M, Wei M, Cheng J-H (2019) A voltammetric biosensor for mercury (II) using reduced graphene oxide@ gold nanorods and thymine-Hg (II)-thymine interaction. Microchim Acta 186:1–8

    Google Scholar 

  • Jin M, Yuan H, Liu B, Peng J, Xu L, Yang D (2020) Review of the distribution and detection methods of heavy metals in the environment. Anal Methods 12(48):5747–5766

    CAS  PubMed  Google Scholar 

  • Karimi-Maleh H, Beitollahi H, Kumar PS, Tajik S, Jahani PM, Karimi F et al (2022) Recent advances in carbon nanomaterials-based electrochemical sensors for food azo dyes detection. Food Chem Toxicol 164:112961

    CAS  PubMed  Google Scholar 

  • Karthik R, Thambidurai S (2017) Synthesis of cobalt doped ZnO/reduced graphene oxide nanorods as active material for heavy metal ions sensor and antibacterial activity. J Alloys Compd 715:254–265

    CAS  Google Scholar 

  • Kim S, Jeong Y, Park M-O, Jang Y, Bae J-S, Hong K-S et al (2023) Development of boron doped diamond electrodes material for heavy metal ion sensor with high sensitivity and durability. J Mater Res Technol 23:1375–1385

    CAS  Google Scholar 

  • Li Y, Huang H, Cui R, Wang D, Yin Z, Wang D et al (2021) Electrochemical sensor based on graphdiyne is effectively used to determine Cd2+ and Pb2+ in water. Sens Actuators B Chem 332:129519

    CAS  Google Scholar 

  • Li T, Shang D, Gao S, Wang B, Kong H, Yang G et al (2022) Two-dimensional material-based electrochemical sensors/biosensors for food safety and biomolecular detection. Biosensors 12(5):314

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li S-N, Zhang C, Li F, Ren N-Q, Ho S-H (2023) Recent advances of algae-bacteria consortia in aquatic remediation. Crit Rev Environ Sci Technol 53(3):315–339

    Google Scholar 

  • Liu H, Baghayeri M, Amiri A, Karimabadi F, Nodehi M, Fayazi M et al (2023) A strategy for As (III) determination based on ultrafine gold nanoparticles decorated on magnetic graphene oxide. Environ Res 231:116177

    CAS  PubMed  Google Scholar 

  • Lomax DJ, Dryfe RA (2018) Electrodeposition of Au on basal plane graphite and graphene. J Electroanal Chem 819:374–383

    CAS  Google Scholar 

  • Mattio E, Robert-Peillard F, Vassalo L, Branger C, Margaillan A, Brach-Papa C et al (2018) 3D-printed lab-on-valve for fluorescent determination of cadmium and lead in water. Talanta 183:201–208

    CAS  PubMed  Google Scholar 

  • Nemati F, Rezaie M, Tabesh H, Eid K, Xu G, Ganjali MR et al (2022) Cerium functionalized graphene nano-structures and their applications; a review. Environ Res 208:112685

    CAS  PubMed  Google Scholar 

  • Newton L, Slater T, Clark N, Vijayaraghavan A (2013) Self assembled monolayers (SAMs) on metallic surfaces (gold and graphene) for electronic applications. J Mater Chem C 1(3):376–393

    CAS  Google Scholar 

  • Omeje KO, Ezema BO, Okonkwo F, Onyishi NC, Ozioko J, Rasaq WA et al (2021) Quantification of heavy metals and pesticide residues in widely consumed nigerian food crops using atomic absorption spectroscopy (AAS) and gas chromatography (GC). Toxins 13(12):870

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ouyang R, Zhu Z, Tatum CE, Chambers JQ, Xue Z-L (2011) Simultaneous stripping detection of Zn (II), Cd(II) and Pb(II) using a bimetallic Hg–Bi/single-walled carbon nanotubes composite electrode. J Electroanal Chem 656(1–2):78–84

    CAS  Google Scholar 

  • Pizarro J, Segura R, Tapia D, Navarro F, Fuenzalida F, Aguirre MJ (2020) Inexpensive and green electrochemical sensor for the determination of Cd(II) and Pb(II) by square wave anodic stripping voltammetry in bivalve mollusks. Food Chem 321:126682

    CAS  PubMed  Google Scholar 

  • Priya T, Dhanalakshmi N, Thennarasu S, Karthikeyan V, Thinakaran N (2019) Ultra sensitive electrochemical detection of Cd2+ and Pb2+ using penetrable nature of graphene/gold nanoparticles/modified L-cysteine nanocomposite. Chem Phys Lett 731:136621

    CAS  Google Scholar 

  • Qin X, Tang D, Zhang Y, Cheng Y, He F, Su Z et al (2020) An electrochemical sensor for simultaneous stripping determination of Cd(II) and Pb(II) based on gold nanoparticles functionalized β-cyclodextrin-graphene hybrids. Int J Electrochem Sci 15(2):1517–1528

    CAS  Google Scholar 

  • Qin J, Su Z, Mao Y, Liu C, Qi B, Fang G et al (2021) Carboxyl-functionalized hollow polymer microspheres for detection of trace metal elements in complex food matrixes by ICP-MS assisted with solid-phase extraction. Ecotoxicol Environ Saf 208:111729

    CAS  PubMed  Google Scholar 

  • Quezada-Renteria JA, Chazaro-Ruiz LF, Rangel-Mendez JR (2020) Poorly conductive electrochemically reduced graphene oxide films modified with alkyne chains to avoid the corrosion-promoting effect of graphene-based materials on carbon steel. Carbon 167:512–522

    CAS  Google Scholar 

  • Rohanifar A, Alipourasiabi N, Shyam Sunder GS, Lawrence JG, Kirchhoff JR (2020) Reversible chelating polymer for determination of heavy metals by dispersive micro solid-phase extraction with ICP-MS. Microchim Acta 187:1–10

    Google Scholar 

  • Sánchez-Calvo A, Blanco-López MC, Costa-García A (2020) Based working electrodes coated with mercury or bismuth films for heavy metals determination. Biosensors 10(5):52

    PubMed  PubMed Central  Google Scholar 

  • Seliverstova E, Ibrayev N, Menshova E (2022) Modification of structure and optical properties of graphene oxide dots, prepared by laser ablation method. Fuller Nanotub 30(1):119–125

    CAS  Google Scholar 

  • Tonello NV, D’Eramo F, Marioli JM, Crevillen AG, Escarpa A (2018) Extraction-free colorimetric determination of thymol and carvacrol isomers in essential oils by pH-dependent formation of gold nanoparticles. Microchim Acta 185:1–8

    CAS  Google Scholar 

  • Uhrovčík J (2014) Strategy for determination of LOD and LOQ values—some basic aspects. Talanta 119:178–180

    PubMed  Google Scholar 

  • Urhan BK, Demir Ü, Özer TÖ, Doğan HÖ (2020) Electrochemical fabrication of Ni nanoparticles-decorated electrochemically reduced graphene oxide composite electrode for non-enzymatic glucose detection. Thin Solid Films 693:137695

    Google Scholar 

  • Vargas C, Simarro R, Reina JA, Bautista LF, Molina MC, González-Benítez N (2019) New approach for biological synthesis of reduced graphene oxide. Biochem Eng J 151:107331

    CAS  Google Scholar 

  • Wang J, Deo RP, Thongngamdee S, Ogorevc B (2001) Effect of surface-active compounds on the stripping voltammetric response of bismuth film electrodes. Electroanalysis 13(14):1153–1156

    CAS  Google Scholar 

  • Wang S, Forzani ES, Tao N (2007) Detection of heavy metal ions in water by high-resolution surface plasmon resonance spectroscopy combined with anodic stripping voltammetry. Anal Chem 79(12):4427–4432

    CAS  PubMed  Google Scholar 

  • Wang L, Peng X, Fu H, Huang C, Li Y, Liu Z (2020) Recent advances in the development of electrochemical aptasensors for detection of heavy metals in food. Biosens Bioelectron 147:111777

    CAS  PubMed  Google Scholar 

  • Wei H, Pan D, Cui Y, Liu H, Gao G, Xia J (2020) Anodic stripping determination of selenium in seawater using an electrode modified with gold nanodendrites/perforated reduced graphene oxide. Int J Electrochem Sci 15(2):1669–1680

    CAS  Google Scholar 

  • Wen L, Dong J, Yang H, Zhao J, Hu Z, Han H et al (2022) A novel electrochemical sensor for simultaneous detection of Cd2+ and Pb2+ by MXene aerogel-CuO/carbon cloth flexible electrode based on oxygen vacancy and bismuth film. Sci Total Environ 851:158325

    CAS  PubMed  Google Scholar 

  • Wong SHM, Lim SS, Tiong TJ, Show PL, Zaid HFM, Loh H-S (2020) Preliminary in vitro evaluation of chitosan–graphene oxide scaffolds on osteoblastic adhesion, proliferation, and early differentiation. Int J Mol Sci 21(15):5202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xia F, Hu B, Shao S, Xu D, Zhou Y, Zhou Y et al (2019) Improvement of spatial modeling of Cr, Pb, Cd, As and Ni in soil based on Portable X-ray Fluorescence (PXRF) and geostatistics: a case study in East China. Int J Environ Res Public Health 16(15):2694

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xing H, Xu J, Zhu X, Duan X, Lu L, Wang W et al (2016) Highly sensitive simultaneous determination of cadmium (II), lead (II), copper (II), and mercury (II) ions on N-doped graphene modified electrode. J Electroanal Chem 760:52–58

    CAS  Google Scholar 

  • Xiong Y, You M, Liu F, Wu M, Cai C, Ding L et al (2020) Pt-decorated, nanocarbon-intercalated, and N-doped graphene with enhanced activity and stability for oxygen reduction reaction. ACS Appl Energy Mater 3(3):2490–2495

    CAS  Google Scholar 

  • Xu J, Cao Z, Zhang Y, Yuan Z, Lou Z, Xu X et al (2018) A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: preparation, application, and mechanism. Chemosphere 195:351–364

    CAS  PubMed  Google Scholar 

  • Yaman YT, Bolat G, Saygin TB, Abaci S (2021) Molecularly imprinted label-free sensor platform for impedimetric detection of 3-monochloropropane-1,2˗diol. Sens Actuators B Chem 328:128986

    CAS  Google Scholar 

  • Yang H, Hu P, Tang J, Cheng Y, Wang F, Chen Z (2021) A bifunctional electrochemical aptasensor based on AuNPs-coated ERGO nanosheets for sensitive detection of adenosine and thrombin. J Solid State Electrochem 25:1383–1391

    CAS  Google Scholar 

  • Yoo MJ, Park HB (2019) Effect of hydrogen peroxide on properties of graphene oxide in Hummers method. Carbon Balance Manag 141:515–522

    CAS  Google Scholar 

  • Zhang M, Zhu G, Li T, Lou X, Zhu L (2020) A dual-channel optical fiber sensor based on surface plasmon resonance for heavy metal ions detection in contaminated water. Opt Commun 462:124750

    CAS  Google Scholar 

  • Zhao D, Cheah WY, Lai SH, Ng E-p, Khoo KS, Show PL et al (2023) Symbiosis of microalgae and bacteria consortium for heavy metal remediation in wastewater. J Environ Chem Eng 11(3):109943

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Project numbered GDK201804-08 of Istanbul Gedik University BAP Commission. I am grateful to Prof. Haslet Eksi-Kocak for assisting me with the electrochemical modification analysis. I would also like to thank Prof. Mustafa Kumral for performing the ICP-MS analysis at Istanbul Technical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reyhan Selin Uysal.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uysal, R.S. A promising electrochemical sensor based on gold deposited-reduced graphene oxide sheets for the detection of Cd(II) and Pb(II). Chem. Pap. 78, 3589–3606 (2024). https://doi.org/10.1007/s11696-024-03330-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-024-03330-8

Keywords

Navigation