Skip to main content
Log in

Electrochemical and microbial decolourization of Congo Red dye-contaminated wastewater: experimental and computational studies

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the degradation of Congo Red (CR) dye in aqueous solution through two different processes: electrochemical oxidation (EO) and microbial degradation. In the electrochemical degradation experiment, several electrochemical parameters were examined to determine their influence on the degradation of CR dye. These parameters included the type of anode used, current density, supporting electrolytes, electrolyte concentrations and pH. Concurrently, microbial degradation was carried out using various indigenous isolates, namely Bacillus megaterium, Lactobacillus delbrueckii, Bacillus sphaericus, Pseudomonas sp., Bacillus lentus, Erwinia sp., Bacillus pumilus, Aspergillus flavus and Aspergillus niger. The effects of mineral salt and time on CR dye degradation were also investigated in the microbial degradation process. Additionally, density functional theory (DFT) computation was employed to analyse the degradation mechanism of CR dye. The results of the electrochemical degradation experiment indicated that the copper anode exhibited superior effectiveness in degrading CR dye compared to the graphite anode. Furthermore, the degradation rate of the dye increased as current density, electrolyte concentration and pH were elevated. In the microbial degradation process, the degradation of CR dye increased over time, and the presence of mineral salt enhanced the degradation rate. The DFT computations revealed that the degradation of the dye initiated at the azo chromophore, sulfonate molecule and ultimately the amide group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the World Bank and French Development Agency, within the framework of the Second Africa Higher Education Centres of Excellence for Development Impact (ACE Impact) Project – P169064, IDA No 6510-NG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emeka E. Oguzie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anene, C.E., Oguzie, K.L., Ogbulie, T.E. et al. Electrochemical and microbial decolourization of Congo Red dye-contaminated wastewater: experimental and computational studies. Chem. Pap. 77, 7761–7774 (2023). https://doi.org/10.1007/s11696-023-03045-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-023-03045-2

Keyword

Navigation