Skip to main content

Advertisement

Log in

Needleless electrospinning of poly (Ɛ-caprolactone) nanofibers deposited on gelatin film for controlled release of Ibuprofen

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A novel bilayer structure composed of poly (Ɛ-caprolactone) (PCL) nanofibers deposited on a hydrogel layer of gelatin (GE) and hyaluronic acid (HA) was prepared via needleless electrospinning with anticipated drug delivery properties. Ibuprofen (IBU) was encapsulated into PCL nanofibers in two different concentrations, i.e., 5 wt% and 7 wt%. Quantification of incorporated IBU of drug-loaded nanofibers was performed by thermogravimetric analysis that proved its successful loading in the nanofibrous structure. The values of Young’s modulus of GH hydrogel films showed appreciable mechanical strength. GH film exhibited a smaller contact angle than PCL nanofibers which advocated its hydrophilicity. Drug release profiles of IBU-loaded bilayer films were studied by UV–vis spectroscopy and a controlled release of IBU up to 45% during 48 h was recorded. The antibacterial analysis of these bilayer samples showed mild inhibition against E. coli bacterial strain in case of IBU-loaded nanofibers, whereas no inhibition against S. epidermidis was observed. Hence, all these findings supported the fact that the IBU-loaded bilayer samples with controlled drug release system and hydrophilicity could be a potential candidate for an effective wound dressing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahire JJ, Robertson D, Neveling DP, Van Reenen AJ, Dicks LMT (2016) Hyaluronic acid-coated poly (d, l-lactide)(PDLLA) nanofibers prepared by electrospinning and coating. Rsc Adv 6(41):34791–34796

    CAS  Google Scholar 

  • Baier Leach J et al (2003) Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds. Biotechnol Bioeng 82(5):578–589

    CAS  Google Scholar 

  • Barreto PLM, Pires ATN, Soldi V (2003) Thermal degradation of edible films based on milk proteins and gelatin in inert atmosphere. Polymer Degrad Stab 79(1):147–152

    CAS  Google Scholar 

  • Bernard GR, Wheeler AP, Russell JA, Schein R, Summer WR, Steinberg KP, Swindell BB (1997) The effects of ibuprofen on the physiology and survival of patients with sepsis. New Engl J Med 336(13):912–918

    CAS  PubMed  Google Scholar 

  • Cao N, Fu Y, He J (2007) Mechanical properties of gelatin films cross-linked, respectively, by ferulic acid and tannin acid. Food Hydrocoll 21(4):575–584

    CAS  Google Scholar 

  • Cassimjee H et al (2022) Genipin-crosslinked, proteosaccharide scaffolds for potential neural tissue engineering applications. Pharmaceutics 14(2):441

    CAS  PubMed  PubMed Central  Google Scholar 

  • Celik G, Oksuz AU (2014) Controlled release of ibuprofen from electrospun biocompatible nanofibers within SituQCM measurements. J Macromol Sci Part A 52(1):76–83

    Google Scholar 

  • Celik I, Akbulut A, Kilic SS, Rahman A, Vural P, Canbaz M, Felek S (2002) Effects of ibuprofen on the physiology and outcome of rabbit endotoxic shock. BMC Infect Dis 2(1):1–13

    Google Scholar 

  • Chanda A et al (2018) Electrospun chitosan/polycaprolactone-hyaluronic acid bilayered scaffold for potential wound healing applications. Int J Biol Macromol 116:774–785

    CAS  PubMed  Google Scholar 

  • Chuaynukul K, Prodpran T, Benjakul S (2014) Preparation, thermal properties and characteristics of gelatin molding compound resin. Res J Chem Environ Sci 2(4):1–9

    Google Scholar 

  • Courts A (1954) The N-terminal amino acid residues of gelatin. 2. Thermal degradation. Biochem J 58(1):74

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evanko SP, Angello JC, Wight TN (1999) Formation of hyaluronan-and versican-rich pericellular matrix is required for proliferation and migration of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 19(4):1004–1013

    CAS  PubMed  Google Scholar 

  • Franco RA et al (2013) Fabrication and biocompatibility of novel bilayer scaffold for skin tissue engineering applications. J Biomater Appl 27(5):605–615

    PubMed  Google Scholar 

  • Gautam S et al (2021) Gelatin-polycaprolactone-nanohydroxyapatite electrospun nanocomposite scaffold for bone tissue engineering. Mater Sci Eng C 119:111588

    CAS  Google Scholar 

  • Gizaw M, Thompson J, Faglie A, Lee SY, Neuenschwander P, Chou SF (2018) Electrospun fibers as a dressing material for drug and biological agent delivery in wound healing applications. Bioengineering 5(1):9

    PubMed  PubMed Central  Google Scholar 

  • Gull N et al (2020) Inflammation targeted chitosan-based hydrogel for controlled release of diclofenac sodium. Int J Biol Macromol 162:175–187

    CAS  PubMed  Google Scholar 

  • Hahn SK et al (2004) Anti-inflammatory drug delivery from hyaluronic acid hydrogels. J Biomater Sci Polym Ed 15(9):1111–1119

    CAS  PubMed  Google Scholar 

  • Hutmacher DW, Cool S (2007) Concepts of scaffold-based tissue engineering—the rationale to use solid free-form fabrication techniques. J Cell Mol Med 11(4):654–669

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iurea DM, Popa M, Chailan JF, Tamba BI, Tudorancea I, Peptu CA (2013) Ibuprofen-loaded chitosan/poly (maleic anhydride-alt-vinyl acetate) submicronic capsules for pain treatment. J Bioact Compat Polymer 28(4):368–384

    CAS  Google Scholar 

  • Jiang BP, Zhang L, Zhu Y, Shen XC, Ji SC, Tan XY, Liang H (2015) Water-soluble hyaluronic acid–hybridized polyaniline nanoparticles for effectively targeted photothermal therapy. J Mater Chem B 3(18):3767–3776

    CAS  PubMed  Google Scholar 

  • Jirsak O, Sanetrnik F, Lukas D, Kotek V, Martinova L, Chaloupek J. (2009) Method of nanofibres production from a polymer solution using electrostatic spinning and a device for carrying out the method. U.S. Patent No. 7,585,437. Washington, DC: U.S. Patent and Trademark Office

  • Jirsak O, Petrik S (2012) Recent advances in nanofibre technology: needleless electrospinning. Int J Nanotechnol 9(8–9):836–845

    CAS  Google Scholar 

  • Johnson JM (2008) Over-the-counter overdoses: a review of ibuprofen, acetaminophen, and aspirin toxicity in adults. Adv Emerg Nur J 30:369–378

    Google Scholar 

  • Kanungo I, Chellappa N, Fathima NN (2015) Microfabrication of gelatin–polycaprolactone composites for customized drug delivery. Mater Sci Eng C 49:597–603

    CAS  Google Scholar 

  • Khandaker M, Riahinezhad S, Jamadagni HG, Morris TL, Coles AV, Vaughan MB (2017) Use of polycaprolactone electrospun nanofibers as a coating for poly (methyl methacrylate) bone cement. Nanomaterials 7(7):175

    PubMed  PubMed Central  Google Scholar 

  • Kiaee G et al (2016) Multilayered controlled released topical patch containing tetracycline for wound dressing. J Silico Vitro Pharmacol 2:2

    Google Scholar 

  • Kiaee G, Etaat M, Kiaee B, Kiaei S, Javar HA (2016) Multilayered controlled released topical patch containing tetracycline for wound dressing. J Silico Vitro Pharmacol 2:2

    Google Scholar 

  • Labet M, Thielemans W (2009) Synthesis of polycaprolactone: a review. Chem Soc Rev 38:3484–3504

    CAS  PubMed  Google Scholar 

  • Li J et al (2006) Electrospinning of hyaluronic acid (HA) and HA/gelatin blends. Macromol Rapid Commun 27(2):114–120

    CAS  Google Scholar 

  • Li Y, Dong T, Li Z, Ni S, Zhou F, Alimi OA, Wu S (2022) Review of advances in electrospinning-based strategies for spinal cord regeneration. Mater Today Chem 24:100944

    Google Scholar 

  • Limpan N, Prodpran T, Benjakul S, Prasarpran S (2010) Properties of biodegradable blend films based on fish myofibrillar protein and polyvinyl alcohol as influenced by blend composition and pH level. J Food Eng 100(1):85–92

    CAS  Google Scholar 

  • Liu J, Zhai H, Sun Y, Wu S, Chen S (2021) Developing high strength poly (L-lactic acid) nanofiber yarns for biomedical textile materials: a comparative study of novel nanofiber yarns and traditional microfiber yarns. Mater Lett 300:130229

    CAS  Google Scholar 

  • Liu J, Li T, Zhang H, Zhao W, Qu L, Chen S, Wu S (2022) Electrospun strong, bioactive, and bioabsorbable silk fibroin/poly (L-lactic-acid) nanoyarns for constructing advanced nanotextile tissue scaffolds. Mater Today Bio 14:100243

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mogoşanu GD, Grumezescu AM (2014) Natural and synthetic polymers for wounds and burns dressing. Int J Pharmaceutics 463(2):127–136

    Google Scholar 

  • Partheniadis I et al (2020) A mini-review: needleless electrospinning of nanofibers for pharmaceutical and biomedical applications. Processes 8(6):673

    CAS  Google Scholar 

  • Prado-Prone G et al (2020) Single-step, acid-based fabrication of homogeneous gelatin-polycaprolactone fibrillar scaffolds intended for skin tissue engineering. Biomed Mater 15(3):035001

    CAS  PubMed  Google Scholar 

  • Sigg J (2017) Production of drug-delivery systems with Ibuprofen through encapsulation in nanofibers and -particles with core-shell architecture, in Life Science and Facility Management. ZHAW, Studieren Zürich. p. 65

  • Velasco-Rodriguez B, Diaz-Vidal T, Rosales-Rivera LC, García-González CA, Alvarez-Lorenzo C, Al-Modlej A, Taboada P (2021) Hybrid methacrylated gelatin and hyaluronic acid hydrogel scaffolds. Preparation and systematic characterization for prospective tissue engineering applications. Int J Mol Sci 22(13):6758

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vig K, Chaudhari A, Tripathi S, Dixit S, Sahu R, Pillai S, Singh SR (2017) Advances in skin regeneration using tissue engineering. Int J Mol Sci 18(4):789

    PubMed  PubMed Central  Google Scholar 

  • Wang X et al (2012) Needleless electrospinning of uniform nanofibers using spiral coil spinnerets. J Nanomater. https://doi.org/10.1155/2012/785920

    Article  Google Scholar 

  • Wang K, Wang W, Ye R, Xiao J, Liu Y, Ding J, Liu A (2017) Mechanical and barrier properties of maize starch–gelatin composite films: effects of amylose content. J Sci Food Agric 97(11):3613–3622

    CAS  PubMed  Google Scholar 

  • Wu S, Zhao W, Sun M, He P, Lv H, Wang Q, Ma J (2022) Novel bi-layered dressing patches constructed with radially-oriented nanofibrous pattern and herbal compound-loaded hydrogel for accelerated diabetic wound healing. Appl Mater Today 28:101542

    Google Scholar 

  • Wu S, Li Y, Zhang C, Tao L, Kuss M, Lim JY, Duan B (2022) Tri-layered and gel-like nanofibrous scaffolds with anisotropic features for engineering heart valve leaflets. Adv Healthc Mater. https://doi.org/10.1002/adhm.202200053

    Article  PubMed  PubMed Central  Google Scholar 

  • Wua S, Donga T, Li Y, Suna M, Qi Ye, Liua J, Kuss MA, Chena S, Duan B (2022) State-of-the-art review of advanced electrospun nanofiber yarn-based textiles for biomedical applications. Appl Mater Today 27:101473

    Google Scholar 

  • Xie Y, Yi ZX, Wang JX, Hou TG, Jiang Q (2018) Carboxymethyl konjac glucomannan-crosslinked chitosan sponges for wound dressing. Int J Biol Macromol 112:1225–1233

    CAS  PubMed  Google Scholar 

  • Yao CH, Lee CY, Huang CH, Chen YS, Chen KY (2017) Novel bilayer wound dressing based on electrospun gelatin/keratin nanofibrous mats for skin wound repair. Mater Sci Eng C 79:533–540

    CAS  Google Scholar 

  • Zhang L, Webster TJ (2009) Nanotechnology and nanomaterials: promises for improved tissue regeneration. NanoToday 4(1):66–80

    CAS  Google Scholar 

  • Zhou Z et al (2013) Effect of chemical cross-linking on properties of gelatin/hyaluronic acid composite hydrogels. Polym-Plast Technol Eng 52(1):45–50

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tabinda Riaz.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riaz, T., Gull, N., Islam, A. et al. Needleless electrospinning of poly (Ɛ-caprolactone) nanofibers deposited on gelatin film for controlled release of Ibuprofen. Chem. Pap. 77, 2657–2669 (2023). https://doi.org/10.1007/s11696-022-02655-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-022-02655-6

Keywords

Navigation