Skip to main content
Log in

Bovine serum albumin-stabilized gold nanoclusters as fluorescent probe for enzyme-free detection of glyphosate

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In present study, bovine serum albumin (BAS)-stabilized gold nanoclusters (AuNCs) combined with Cu2+ were used for rapid fluorimetric detection of glyphosate in water samples. The morphology and optical properties of synthesized BSA-AuNCs were characterized by TEM, UV–Vis spectroscopy and fluorescence techniques. Theoretically, Cu2+ would react with the tryptophan of BSA-AuNCs, thereby disrupting the surface structure of BSA-AuNCs and allowing aggregation of dispersed BSA-AuNCs, which showed the function to quenching the red fluorescence of BSA-AuNCs at 680 nm. However, in the presence of glyphosate in the system, there are strong chelation interactions between Cu2+ and glyphosate, so the fluorescence of BSA-AuNCs was restored and the recovered intensity is related to the glyphosate concentration. As a result, a linear graph between the fluorescence intensity with glyphosate concentration in the range of 0.06–12 μg/mL was plotted and used for quantification of glyphosate with a detection limit of 8 ng/mL. Satisfactory recoveries were obtained in the determination of spiked water samples, demonstrating that the prepared BSA-AuNCs can be used as a promising tool in the field of environment monitoring of glyphosate residue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allinson G, Allinson M, Bui A, Zhang P, Croatto G, Wightwick A, Rose G, Walters R (2016) Pesticide and trace metals in surface waters and sediments of rivers entering the corner Inlet Marine National Park, Victoria Australia. Environ Sci Pollut Res 23:5881

    Article  CAS  Google Scholar 

  • Benbrook CM (2016) Trends in glyphosate herbicide use in the United States and globally. Environ Sci Eur 28:1

    Article  CAS  Google Scholar 

  • Bi M, Yapo A, Dembele A, Ello A, Trokourey A (2011) Determination of glyphosate by high performance liquid chromatography (HPLC) without prior extraction. Int J Biol Chem Sci 5:314

    Google Scholar 

  • Bradley PM, Journey CA, Romanok KM, Barber LB, Buxton KT (2017) Expanded target-chemical analysis reveals extensive mixed-organic-contaminant exposure in US Streams. Environ Sci Technol 51:4792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dandpat SS, Sahu PK, Sarkar M (2016) Studies on the mechanism of fluorescence quenching of CdS quantum dots by 2-Amino-7-Nitrofluorene and 2-(N, N-dimethylamino)-7-Nitrofluorene. ChemistrySelect 1:2290

    Article  CAS  Google Scholar 

  • De Raadt WM, Wijnen PA, Bast A, Bekers O, Drent M (2015) Acute eosinophilic pneumonia associated with glyphosate-surfactant exposure. Sarcoidosis, Vasculitis, Diffuse Lung Dis: Off J WASOG 32:172

    Google Scholar 

  • Duke SO, Powles SB (2008) Glyphosate: a once-in-a-century herbicide. Pest Manag Sci 64:319

    Article  CAS  PubMed  Google Scholar 

  • Duranmeras I, Galeanodiaz T, Alexandrefranco M (2005) Simultaneous fluorimetric determination of glyphosate and its metabolite, aminomethylphosphonic acid, in water, previous derivatization with NBD-Cl and by partial least squares calibration (PLS). Talanta 65:7

    Article  CAS  Google Scholar 

  • Durgadas CV, Sharma CP, Sreenivasan K (2011) Fluorescent gold clusters as nanosensors for copper ions in live cells. Analyst 136:933

    Article  CAS  PubMed  Google Scholar 

  • Govindarajulu PP (2008) Literature review of impacts of glyphosate herbicide on amphibians: what risks can the silvicultural use of this herbicide pose for amphibians in B.C.? Ecosyst Branch, Minist Environ 1:960118

    Google Scholar 

  • Guan J, Yang J, Zhang Y, Zhang X, Deng H, Xu J, Wang J, Yuan MS (2021) Employing a fluorescent and colorimetric picolyl-functionalized rhodamine for the detection of glyphosate pesticide. Talanta 224:121834

    Article  CAS  PubMed  Google Scholar 

  • Hong C, Ye S, Dai C, Wu C, Chen L, Huang Z (2020) Sensitive and on-site detection of glyphosate based on papain-stabilized fluorescent gold nanoclusters. Anal Bioanal Chem 412:8177

    Article  CAS  PubMed  Google Scholar 

  • Hu CH, Zhou WB (2014) Spatiotemporal variations of hydrochemistry parameters in the PoYang lake catchment. Resour Environ Yangtze Basin 23:428

    Google Scholar 

  • Hu J, Zhao D, Ning J, Chen C, Li J (2007) Determination of glyphosate residues in soil and apple by capillary gas chromatography with nitrogen-phosphorus detection. Chin J Pestic Sci 9:285

    CAS  Google Scholar 

  • Hu JY, Chen CL, Li JZ (2008) A simple method for the determination of glyphosate residues in soil by capillary gas chromatography with nitrogen phosphorus. J Anal Chem 63:371

    Article  CAS  Google Scholar 

  • Huang Y, Reddy KN, Thomson SJ, Yao H (2015) Assessment of soybean injury from glyphosate using airborne multispectral remote sensing: assessment of soybean injury from glyphosate. Pest Manag Sci 71:545

    Article  CAS  PubMed  Google Scholar 

  • Ibáñez M, Pozo ÓJ, Sancho JV, López FJ, Hernández F (2005) Residue determination of glyphosate, glufosinate and aminomethylphosphonic acid in water and soil samples by liquid chromatography coupled to electrospray tandem mass spectrometry. J Chromatogr A 1081:145

    Article  PubMed  Google Scholar 

  • Johal GS, Huber DM (2009) Glyphosate effects on diseases of plants. Eur J Agron 31:144

    Article  CAS  Google Scholar 

  • Kawagashira Y, Koike H, Kawabata K, Takahashi M, Ohyama K, Hashimoto R, Iijima M, Katsuno M, Sobue G (2017) Vasculitic neuropathy following exposure to a glyphosate-based herbicide. Intern Med 56:1431

    Article  PubMed  PubMed Central  Google Scholar 

  • Kimani M, Pérez-Padilla V, Valderrey V, Gawlitza K, Rurack K (2022) Red-emitting polymerizable guanidinium dyes as fluorescent probes in molecularly imprinted polymers for glyphosate detection. Chemosensors 10:99

    Article  CAS  Google Scholar 

  • Lee EA, Zimmerman LR, Bhullar BS, Thurman EM (2002) Linker-assisted immunoassay and liquid chromatography/mass spectrometry for the analysis of glyphosate. Anal Chem 74:4937

    Article  CAS  PubMed  Google Scholar 

  • Liao Y, Berthion JM, Colet I, Merlo M, Nougadère A, Hu R (2018) Validation and application of analytical method for glyphosate and glufosinate in foods by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1549:31

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Feng W, Tian M, Hu L, Qu Q, Yang L (2021) Titanium dioxide-coated core-shell silica microspheres-based solid-phase extraction combined with sheathless capillary electrophoresis-mass spectrometry for analysis of glyphosate, glufosinate and their metabolites in baby foods. J Chromatogr A 1659:462519

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Yang B, Gao G, Cai J, Gong Y, Dai JY, Tang XM (2019) Characteristics of amino acids during the process of typhoon in algal rich areas of Lake Taihu. Ecology and Environmental Sciences, 28: 1664

  • Lushchak OV, Kubrak OI, Storey JM, Storey KB, Lushchak VI (2009) Low toxic herbicide roundup induces mild oxidative stress in goldfish tissues. Chemosphere 76:932

    Article  CAS  PubMed  Google Scholar 

  • Marino M, Mele E, Viggiano A, Nori SL, Meccariello R, Santoro A (2021) Pleiotropic outcomes of glyphosate exposure: from organ damage to effects on inflammation, cancer, reproduction and development. Int J Mol Sci 22:12606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mcmillan KS, McCluskey AG, Sorensen A, Boyd M, Zagnoni M (2016) Emulsion technologies for multicellular tumour spheroid radiation assays. Analyst 141:100

    Article  CAS  PubMed  Google Scholar 

  • Mirmohseni A, Farhadi K, Jahangiri S (2020) Application of polydimethylsiloxane/acrylic resins coated quartz crystal nano balance sensor for detection of glyphosate pesticide. Int J Environ Anal Chem 100:733

    Article  CAS  Google Scholar 

  • Niu Y, Ding T, Liu J, Zhang G, Tong L, Cheng X, Yang Y, Chen Z, Tang B (2021) Fluorescence switch of gold nanoclusters stabilized with bovine serum albumin for efficient and sensitive detection of cysteine and copper ion in mice with alzheimer’s disease. Talanta 223:121745

    Article  CAS  PubMed  Google Scholar 

  • Okada E, Pérez D, De Gerónimo E, Aparicio V, Massone H, Costa JL (2018) Non-point source pollution of glyphosate and AMPA in a rural basin from the southeast Pampas Argentina. Environ Sci Pollut Res 25:15120

    Article  CAS  Google Scholar 

  • Patil SN, Sanningannavar FM, Navati BS, Nagaraja D, Patil NR, Melavanki RM (2015) Quenching mechanism of 5BDTC by aniline using Stern–Volmer plots. Can J Phys 93:1076

    Article  CAS  Google Scholar 

  • Peillex C, Pelletier M (2020) The impact and toxicity of glyphosate and glyphosate-based herbicides on health and immunity. J Immunotoxicol 17:163

    Article  CAS  PubMed  Google Scholar 

  • Relyea RA (2012) New effects of roundup on amphibians: predators reduce herbicide mortality; herbicides induce antipredator morphology. Ecol Appl 22:634

    Article  PubMed  Google Scholar 

  • Sato K, Jin JY, Takeuchi T, Miwa T, Suenami K, Takekoshi Y, Kanno S (2001) Integrated pulsed amperometric detection of glufosinate, bialaphos and glyphosate at gold electrodes in anion-exchange chromatography. J Chromatogr A 919:313

    Article  CAS  PubMed  Google Scholar 

  • Sato C, Kamijo Y, Yoshimura K, Ide T (2011) Aseptic meningitis in association with glyphosate-surfactant herbicide poisoning. Clin Toxicol 49:118

    Article  CAS  Google Scholar 

  • Shao CY, Howe CJ, Porter AJR, Glover LA (2002) Novel cyanobacterial biosensor for detection of herbicides. Appl Environ Microbiol 68:5026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheals J, Persson P, Hedman B (2001) IR and EXAFS spectroscopic studies of glyphosate protonation and copper(II) complexes of glyphosate in aqueous solution. Inorg Chem 40:4302

    Article  CAS  PubMed  Google Scholar 

  • Songa EA, Waryo T, Jahed N, Baker PGL, Kgarebe BV, Iwuoha EI (2009) Electrochemical nanobiosensor for glyphosate herbicide and its metabolite. Electroanalysis 21:671

    Article  CAS  Google Scholar 

  • Sun F, Yang L, Li S, Wang Y, Wang L, Li P, Ye F, Fu Y (2021) New fluorescent probes for the sensitive determination of glyphosate in food and environmental samples. J Agric Food Chem 69:12661

    Article  CAS  PubMed  Google Scholar 

  • Tao Y, Lin Y, Ren J, Qu X (2013) A dual fluorometric and colorimetric sensor for dopamine based on BSA-stabilized aunanoclusters. Biosens Bioelectron 42:41

    Article  CAS  PubMed  Google Scholar 

  • Tao Y, Li M, Ren J, Qu X (2015) Metal nanoclusters: novel probes for diagnostic and therapeutic applications. Chem Soc Rev 44:8636

    Article  CAS  PubMed  Google Scholar 

  • Tierney KB, Singh CR, Ross PS, Kennedy CJ (2007) Relating olfactory neurotoxicity to altered olfactory-mediated behaviors in rainbow trout exposed to three currently-used pesticides. Aquat Toxicol 81:55

    Article  CAS  PubMed  Google Scholar 

  • Valle AL, Mello FCC, Alves-Balvedi RP, Rodrigues LP, Goulart LR (2019) Glyphosate detection: methods, needs and challenges. Environ Chem Lett 17:291

    Article  CAS  Google Scholar 

  • Wang L, Bi Y, Gao J, Li Y, Ding H, Ding L (2016) Carbon dots based turn-on fluorescent probes for the sensitive determination of glyphosate in environmental water samples. RSC Adv 6:85820

    Article  CAS  Google Scholar 

  • Wang X, Yang Y, Huo D, Ji Z, Ma Y, Yang M, Luo H, Luo X, Hou C, Lv J (2020) A turn-on fluorescent nanoprobe based on N-doped silicon quantum dots for rapid determination of glyphosate. Microchim Acta 187:341

    Article  CAS  Google Scholar 

  • Wang H, Rui J, Xiao W, Peng Y, Peng Z, Qiu P (2022) Enzyme-free ratiometric fluorescence and colorimetric dual read-out assay for glyphosate with ultrathin g-C3N4 nanosheets. Microchem J 180:107587

    Article  CAS  Google Scholar 

  • Wu J, Chen X, Zhang Z, Zhang J (2022) “Off-on” fluorescence probe based on green emissive carbon dots for the determination of Cu2+ ions and glyphosate and development of a smart sensing film for vegetable packaging. Microchim Acta 189:1

    Article  Google Scholar 

  • Xu JX, Yuan Y, Zou S, Chen O, Zhang D (2019) A divide-and-conquer strategy for quantification of light absorption, scattering, and emission properties of fluorescent nanomaterials in solutions. Anal Chem 91:8540

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Li L, Lin L, Wang X, Li J, Liu H, Liu X, Huo D, Hou C (2022) A dual-signal sensing strategy based on ratiometric fluorescence and colorimetry for determination of Cu2+ and glyphosate. Anal Bioanal Chem 414:2619

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Wang E (2014) Metal nanoclusters: new fluorescent probes for sensors and bioimaging. Nano Today 9:132

    Article  CAS  Google Scholar 

  • Zhao P, Yan M, Zhang C, Peng R, Ma D, Yu J (2011) Determination of glyphosate in foodstuff by one novel chemiluminescence-molecular imprinting sensor. Spectrochim Acta A Mol Biomol Spectrosc 78:1482

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21765015, 21808099) and the Science and Technology Innovation Platform of Jiangxi Province (20192BCD40001), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Qiu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Wang, H., Wu, S. et al. Bovine serum albumin-stabilized gold nanoclusters as fluorescent probe for enzyme-free detection of glyphosate. Chem. Pap. 77, 2183–2192 (2023). https://doi.org/10.1007/s11696-022-02621-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-022-02621-2

Keywords

Navigation