Skip to main content
Log in

Simplified prepared silver nanoparticles for ultra-sensitive enhanced Raman spectroscopy substrate

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Rapidly nondestructive detection technologies play an essential role in industry of food, petro-chemical and aerospace. Herein, assembled Ag nanoparticles with average diameter of 67 nm were successfully fabricated as an active SERS substrate through a modified polyol method. Rhodamine 6G (R6G, target–molecular) and Ag NPs were mixed directly, achieving an ultra-high sensitive SERS substrate with a high R6G limiting resolution of 10−12 and a superior Enhancement Factor (EF) up to 2.2 × 109. Besides, the uniformity of R6G’s Raman intensity was demonstrated, which implies that the substrate emerges a potential value in the areas of medicine, food safety and biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bell SEJ, Charron G, Cortés E, Kneipp J, de la Chapelle ML, Langer J, Procházka M, Tran V, Schlücker S (2020) Towards reliable and quantitative surface-enhanced raman scattering (SERS): from key parameters to good analytical practice. Angew Chem Int Ed 59:5454–5462

    Article  CAS  Google Scholar 

  • Bi J (2019) Electrodeposited silver nanoflowers as sensitive surface-enhanced Raman scattering sensing substrates. Mater Lett 236:398–402

    Article  CAS  Google Scholar 

  • Cai J, Liu R, Jia S, Feng Z, Lin L, Zheng Z, Wu S, Wang Z (2021) SERS hotspots distribution of the highly ordered noble metal arrays on flexible substrates. Opt Mater 122:111779

    Article  CAS  Google Scholar 

  • Chakraborty S, Awasthi V, Goel R, Dubey SK (2021) Numerical design of SERS-active substrate for analyte detection using gold-hexagonal patterns. Vib Spectrosc 117:103312

    Article  CAS  Google Scholar 

  • Ding S-Y, Yi J, Li J-F, Ren B, Wu D-Y, Panneerselvam R, Tian Z-Q (2016) Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat Rev Mater 1:16021

    Article  CAS  Google Scholar 

  • Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166

    Article  CAS  Google Scholar 

  • Guo J, Zeng F, Guo J, Ma X (2020) Preparation and application of microfluidic SERS substrate: Challenges and future perspectives. J Mater Sci Technol 37:96–103

    Article  CAS  Google Scholar 

  • Hayashi S, Koh R, Ichiyama Y, Yamamoto K (1988) Evidence for surface-enhanced Raman scattering on nonmetallic surfaces: copper phthalocyanine molecules on GaP small particles. Phys Rev Lett 60:1085–1088

    Article  CAS  PubMed  Google Scholar 

  • Huo SH, Gao WT, Zhou PX, Deng ZP, Han ZG, Cui XT, Lu XQ (2022) Magnetic porous carbon composites for rapid and highly efficient degradation of organic pollutants in water. Adv Powder Mater 1(3):100028

    Article  Google Scholar 

  • Jeanmaire DL, Van Duyne RP (1977) Surface raman spectroelectrochemistry: part I. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem Interfacial Electrochem 84:1–20

    Article  CAS  Google Scholar 

  • Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size. Shape Dielectr Environ J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  • Kumar GS, Shrestha RG, Ji Q, Hill JP, Ariga K, Acharya S, Shrestha LK (2018) Hierarchical heterostructure of Ag-nanoparticle decorated fullerene nanorods (Ag–FNRs) as an effective single particle freestanding SERS substrate. PCCP 20:18873–18878

    Article  CAS  PubMed  Google Scholar 

  • Li H, Zhu Y-J (2021) Nanowires: synthesis and energy/environmental applications. Energy Environ Mater 4:544–561

    Article  Google Scholar 

  • Liu L, Ma T, Fang W, Liu Y, Konstantinov K, Wang J, Liu H-K (2021) Facile fabrication of Ag nanocrystals encapsulated in nitrogen-doped fibrous carbon as an efficient catalyst for lithium oxygen batteries. Energy Environ Mater 4:239–245

    Article  CAS  Google Scholar 

  • Lombardi JR, Birke RL, Sanchez LA, Bernard I, Sun SC (1984) The effect of molecular structure on voltage induced shifts of charge transfer excitation in surface enhanced Raman scattering. Chem Phys Lett 104:240–247

    Article  CAS  Google Scholar 

  • Masango SS, Hackler RA, Large N, Henry A-I, McAnally MO, Schatz GC, Stair PC, Van Duyne RP (2016) High-resolution distance dependence study of surface-enhanced raman scattering enabled by atomic layer deposition. Nano Lett 16:4251–4259

    Article  CAS  PubMed  Google Scholar 

  • Moskovits M (2005) Surface-enhanced Raman spectroscopy: a brief retrospective. J Raman Spectrosc 36:485–496

    Article  CAS  Google Scholar 

  • Lu N, Zhang M, Jing X, Zhang P, Zhu Y, Zhang Z (2001) Electrospun-semiconductor-based nano-heterostructures for photocatalytic energy conversion and environmental remediation: opportunities and challenges. Energy Environ Mater. https://doi.org/10.1002/eem2.12338

  • Pozzi EA, Sonntag MD, Jiang N, Klingsporn JM, Hersam MC, Van Duyne RP (2013) Tip-enhanced Raman imaging: an emergent tool for probing biology at the nanoscale. ACS Nano 7:885–888

    Article  CAS  PubMed  Google Scholar 

  • Souza KS, dos Santos DP, Andrade GFS, Pereira MB, Teixeira-Neto E, Temperini MLA (2017) Molecular wires bridging gaps between gold surfaces and their influence on SERS intensities. J Phys Chem C 121:20937–20946

    Article  CAS  Google Scholar 

  • Tian C, Zhao L, Zhu J, Zhang S (2022) Simultaneous detection of trace Hg2+ and Ag+ by SERS aptasensor based on a novel cascade amplification in environmental water. Chem Eng J 435:133879

    Article  CAS  Google Scholar 

  • Vu TD, Khac Duy P, Bui HT, Han S-H, Chung H (2019) Reduced graphene oxide–Nickel sulfide (NiS) composited on mechanical pencil lead as a versatile and cost-effective sensor for electrochemical measurements of bisphenol A and mercury (II). Sens Actuators B 281:320–325

    Article  CAS  Google Scholar 

  • Wan Y, Goubet N, Albouy P-A, Schaeffer N, Pileni M-P (2013a) Hierarchy in au nanocrystal ordering in a supracrystal: II. Control Interparticle Distances Langmuir 29:13576–13581

    CAS  PubMed  Google Scholar 

  • Wan Y, Portalès H, Goubet N, Mermet A, Pileni M-P (2013b) Impact of nanocrystallinity segregation on the growth and morphology of nanocrystal superlattices. Nano Res 6:611–618

    Article  CAS  Google Scholar 

  • Wang H, Li KB, Xu C, Xu SC, Li GH (2019) Large-scale solvothermal synthesis of Ag nanocubes with high SERS activity. J Alloys Compd 772:150–156

    Article  CAS  Google Scholar 

  • Wang Z, Wen X, Feng Z, Lin L, Liu R, Huang P, Chen G, Huang F, Zheng Z (2018) Highly ordered Au-Ag alloy arrays with tunable morphologies for surface enhanced Raman spectroscopy. Chem Eng J 345:389–394

    Article  CAS  Google Scholar 

  • X. Geng, F. Zhang, Z. Guo, J. Zhang, Y. Gao, C. Gu, X. Shen, J. Zhou, UV-light-assisted synthesis of CeB6@Ag nano-trees for SERS application, J. Rare Earths 2021.

  • Y. Xiong, Y. Lin, X. Wang, Y. Zhao, J. Tian, Defect engineering on SnO2 nanomaterials for enhanced gas sensing performances, Adv Powder Mater 2022

  • Yan X, Wang M, Sun X, Wang Y, Shi G, Ma W, Hou P (2019) Sandwich-like Ag@Cu@CW SERS substrate with tunable nanogaps and component based on the Plasmonic nanonodule structures for sensitive detection crystal violet and 4-aminothiophenol. Appl Surf Sci 479:879–886

    Article  CAS  Google Scholar 

  • Yang P-S, Yin Y-T, Lin P-C, Chen L-Y, Chen M-J (2019) High chemical resistance and Raman enhancement in Ag/Al2O3 core-shell plasmonic nanostructures tailored by atomic layer deposition. Mater Chem Phys 223:441–446

    Article  CAS  Google Scholar 

  • Yi Z, Niu G, Luo J, Kang X, Yao W, Zhang W, Yi Y, Yi Y, Ye X, Duan T, Tang Y (2016) Ordered array of Ag semishells on different diameter monolayer polystyrene colloidal crystals: An ultrasensitive and reproducible SERS substrate. Sci Rep 6:32314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Jiang SZ, Huo YY, Liu AH, Xu SC, Liu XY, Sun ZC, Xu YY, Li Z, Man BY (2015) SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure. Opt Express 23:24811–24821

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Wang J, Li G, Chen L, Wang H, Tian X (2019) Fabrication of Ag-nanosheet-assembled hollow tubular array and their SERS effect. J Alloys Compd 772:663–668

    Article  CAS  Google Scholar 

  • Zhong C, Dan Y, Zhang P, Wang J (2019) Self-assembly urchin-like Au-NSs arrays and application as surface-enhanced Raman scattering substrates. Mater Lett 234:125–128

    Article  CAS  Google Scholar 

  • Zhu J, Xu Z-J, Weng G-J, Zhao J, Li J-J, Zhao J-W (2018) Etching-dependent fluorescence quenching of Ag-dielectric-Au three-layered nanoshells: The effect of inner Ag nanosphere. Spectrochim Acta, Part A 200:43–50

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support by the National Science Foundation of China (No. 51871196), Yunnan Fundamental Research Projects (No. 202001BB050046), the Major Science and Technology Project of Precious Metal Materials Genetic Engineering in Yunnan Province (No. 202002AB080001). Authors thank Analysis and Measurement Center of Yunnan University for the sample testing service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanfen Wan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Jiang, H., Ye, G. et al. Simplified prepared silver nanoparticles for ultra-sensitive enhanced Raman spectroscopy substrate. Chem. Pap. 77, 1713–1720 (2023). https://doi.org/10.1007/s11696-022-02589-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-022-02589-z

Keywords

Navigation