Skip to main content
Log in

Self-assembly for hybrid biomaterial of uridine monophosphate to enhance the optical phenomena

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Solving the structural behavior of RNA is a big challenge for understanding researchers and biogenetic engineers. We used the coordination tool to understand the UMP-RNA's structural revolution phenomena. Intimation occurred between UMP (uridine-5'-monophosphate) with copper metal ions with the help of resonating legends BPA (1,2-di(4-pyridyl) ethane). We successfully obtained self-assembled complex 2D chiral biomaterial, which is very interesting for its simplicity in preparation, highly tunable structure and properties, and excellent biocompatibility. Its structure evaluated (orthorhombic geometry, P212121 space group and CCDC # 1962481), chirality (P-HELIX) and mutation of UMP-RNA are investigated using single-crystal XRD. In addition, the electronic transition quickly occurred due to the presence of BPA (which acts as an electronic wire) and RNA-UMP (which acts as an electronic antenna) that compensate electronic cloud. The self-assembly for supramolecular coordination complex (UMP-Cu-BPA) of uridine monophosphate excellent shows the non-linear optics (NLO) properties confirmed via DFT calculation with basic benchmark sets that make confidential results. As a result, according to my best knowledge, we find the 1st time for the new class of nonlinear optics materials. HOMO–LUMO gap, frontier molecular orbital, hyperpolarizability, transition dipole moment density, the density of states (DOS) and molecular electrostatic potential of designed systems of UMP-Cu-BPA are all investigated. The computed absorption spectra of UMP, [BPA] and UMP-Cu-BPA are most closely similar to the obtained results. The phenyl ring of BPA and the phosphate group of UMP have a significant role in the NLO response. The first-, second- and third-order hyperpolarizability (frequency dependent) tremendously arises due to the transfer of charge from the donor to the acceptor moiety in the UMP-Cu-BPA. This experimental work provides a direction to researchers and genetic engineers to understand electronic behavior. It gives us the right choice about complex chiral biomaterial that considerably impacts the non-linear optical property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ahsin A, Jadoon T, Ayub K (2022) M@[12-crown-4] and M@[15-crown-5] where (M = Li, Na, and K); the very first examples of non-conventional one alkali metal-containing alkalides with remarkable static and dynamic NLO response. Physica E 140:115170

    Article  CAS  Google Scholar 

  • Ali RF, Gates BD (2022) Lithium niobate particles with a tunable diameter and porosity for optical second harmonic generation. RSC Adv 12(2):822–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Yasari A et al (2016) Donor–acceptor organo-imido polyoxometalates: high transparency, high activity redox-active NLO chromophores. Dalton Trans 45(7):2818–2822

    Article  CAS  PubMed  Google Scholar 

  • Anitha S et al (2022) Prospective theoretical investigations of optical, dielectric, mechanical and third-order NLO property in potassium tri-hydrogen di-succinate single crystal. Chin J Phys 76:145–171

    Article  CAS  Google Scholar 

  • Annu B et al (2022) Vibrational spectral studies, thermodynamic investigations and DFT (NLO, NBO, MEP) computation of benzene derivative. In: Proceedings of the international conference on atomic, molecular, optical and nano physics with applications: CAMNP 2019. Springer

  • Biradha K, Seward C, Zaworotko MJ (1999) Helical coordination polymers with large chiral cavities. Angew Chem Int Ed 38(4):492–495

    Article  CAS  Google Scholar 

  • Bringmann G et al (2005) Atroposelective synthesis of axially chiral biaryl compounds. Angew Chem Int Ed 44(34):5384–5427

    Article  CAS  Google Scholar 

  • Cook TR et al (2013) Biomedical and biochemical applications of self-assembled metallacycles and metallacages. Acc Chem Res 46(11):2464–2474

    Article  CAS  PubMed  Google Scholar 

  • Cygorek M et al (2022) Simulation of open quantum systems by automated compression of arbitrary environments. Nature Phys 18:662–688

    Article  CAS  Google Scholar 

  • Da BC et al (2021) Chiral phosphoric acid catalyzed asymmetric synthesis of axially chiral compounds. Chin J Chem 39(7):1787–1796

    Article  CAS  Google Scholar 

  • de la Lande A, Denisov S, Mostafavi M (2021) The mystery of sub-picosecond charge transfer following irradiation of hydrated uridine monophosphate. Phys Chem Chem Phys 23(37):21148–21162

    Article  PubMed  Google Scholar 

  • Dhawan P et al (2022) A systematic study of the third-order non-linear optical co-crystal of bis-((diisopropyl) ammonium) dichromate: X-ray, Hirshfeld surface, optical, and mechanical analysis. J Mol Struct 1270:133869

    Article  CAS  Google Scholar 

  • Elangovan N, Thomas R, Sowrirajan S (2022) Synthesis of Schiff base (E)-4-((2-hydroxy-3, 5-diiodobenzylidene) amino)-N-thiazole-2-yl) benzenesulfonamide with antimicrobial potential, structural features, experimental biological screening and quantum mechanical studies. J Mol Struct 1250:131762

    Article  CAS  Google Scholar 

  • Facchetti A et al (2002) Azinium−(π-bridge)− pyrrole NLO-phores: influence of heterocycle acceptors on chromophoric and self-assembled thin-film properties. Chem Mater 14(12):4996–5005

    Article  CAS  Google Scholar 

  • Geng K et al (2022) Efficient strategy for investigating the third-order nonlinear optical (NLO) properties of solid-state coordination polymers. Inorg Chem 61(31):12386–12395

    Article  CAS  PubMed  Google Scholar 

  • Gu L et al (2017) Unusual crystal structure and Chirality of uridine 5′-monophosphate coordination polymer. RSC Adv 7(34):20840–20844

    Article  CAS  Google Scholar 

  • Gunavathi S et al (2022) Synthesis and characterisation of formohydrazide derivatives as potential antimicrobial agents: molecular docking and DFT studies. Mol Phys 120:e2053219

    Article  Google Scholar 

  • Han A et al (2020) Synthesis, crystal structures, and luminescent properties of Zn (ii), Cd (ii), Eu (iii) complexes and detection of Fe (iii) ions based on a diacylhydrazone Schiff base. RSC Adv 10(39):23372–23378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanuza J et al (2018) DFT study of electron absorption and emission spectra of pyramidal LnPc (OAc) complexes of some lanthanide ions in the solid state. Spectrochim Acta Part A Mol Biomol Spectrosc 196:202–208

    Article  CAS  Google Scholar 

  • Hasan M et al (2022) Polythiophene as a sensor model for chlorofluorocarbon, fluorine, and oxygen gas using DFT calculations. J Mol Model 28(3):1–13

    Article  Google Scholar 

  • He C, Shen Y, Forbes A (2022) Towards higher-dimensional structured light. Light Sci Appl 11(1):1–17

    Article  Google Scholar 

  • Hickey AL, Rowley CN (2014) Benchmarking quantum chemical methods for the calculation of molecular dipole moments and polarizabilities. J Phys Chem A 118(20):3678–3687

    Article  CAS  PubMed  Google Scholar 

  • Hussain W et al (2019) Comparative study of cobalt sulphides properties for photocatalytic and battery applications. Semicond Sci Technol 34(9):095015

    Article  CAS  Google Scholar 

  • Ilyas M et al (2022) A DFT approach for finding therapeutic potential of two dimensional (2D) graphitic carbon nitride (GCN) as a drug delivery carrier for curcumin to treat cardiovascular diseases. J Mol Struct 1257:132547

    Article  CAS  Google Scholar 

  • Iqbal MJ et al (2021) PH Controlled the Supramolecular Assemblies of Two Guanosine Monophosphate Cadmium Metal Coordination Complexes: Structure and Chirality

  • Ito H, Itami K (2019) An axially chiral 1, 1′-biazulene and its π-extended derivative: synthesis, structures and properties. Chem Commun 55(65):9606–9609

    Article  Google Scholar 

  • Khan MA et al (2021) Relative study of Ni sulfides synthesized from single and multisource precursors for photocatalytic and battery applications. Energy Rep 7:7615–7627

    Article  Google Scholar 

  • Khan MA et al (2022a) Fabrication of Ag nanoparticles on a Cu-substrate with excellent superhydrophobicity, anti-corrosion, and photocatalytic activity. Alex Eng J 61(8):6507–6521

    Article  Google Scholar 

  • Khan MA et al (2022b) Controlled supramolecular interaction to enhance the bioavailability of hesperetin to targeted cancer cells through graphyne: a comprehensive in silico study. RSC Adv 12(10):6336–6346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MA et al (2022c) Self-assembly of 2D coordination complex of cytidine monophosphate to boost up the optical phenomena. J Mol Struct 1268:133655

    Article  CAS  Google Scholar 

  • Khera M, Goel N (2020) Qualitative as well as quantitative analysis of interactions present in chlorine and bromine substituted aromatic organic crystals: a DFT linked Crystal Explorer study. J Mol Graph Model 95:107503

    Article  CAS  PubMed  Google Scholar 

  • Kuebler SM, Denning RG, Anderson HL (2000) Large third-order electronic polarizability of a conjugated porphyrin polymer. J Am Chem Soc 122(2):339–347

    Article  CAS  Google Scholar 

  • Li B et al (2014) Porous metal–organic frameworks for gas storage and separation: what, how, and why? J Phys Chem Lett 5(20):3468–3479

    Article  CAS  PubMed  Google Scholar 

  • Li H et al (2019) Porous metal-organic frameworks for gas storage and separation: status and challenges. EnergyChem 1(1):100006

    Article  Google Scholar 

  • Liu H-K, Sadler PJ (2011) Metal complexes as DNA intercalators. Acc Chem Res 44(5):349–359

    Article  CAS  PubMed  Google Scholar 

  • McKinnon JJ, Fabbiani FP, Spackman MA (2007) Comparison of polymorphic molecular crystal structures through Hirshfeld surface analysis. Cryst Growth Des 7(4):755–769

    Article  CAS  Google Scholar 

  • Mehboob MY et al (2022) Theoretical modelling of novel indandione-based donor molecules for organic solar cell applications. J Phys Chem Solids 162:110508

    Article  CAS  Google Scholar 

  • Miyake H, Tsukube H (2012) Coordination chemistry strategies for dynamic helicates: time-programmable Chirality switching with labile and inert metal helicates. Chem Soc Rev 41(21):6977–6991

    Article  CAS  PubMed  Google Scholar 

  • Mondal H et al (2018) Tetrapolymer network hydrogels via gum ghatti-grafted and N–H/C–H-activated allocation of monomers for composition-dependent superadsorption of metal ions. ACS Omega 3(9):10692–10708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mun J et al (2020) Electromagnetic chirality: from fundamentals to nontraditional Chiroptical phenomena. Light Sci Appl 9(1):1–18

    Article  Google Scholar 

  • Négadi T (2014) The genetic code invariance: when Euler and Fibonacci meet. http://arxiv.org/abs/1406.6092

  • Ouaket A et al (2022) Synthesis, Spectroscopic (13C/1H-NMR, FT-IR) investigations, Quantum Chemical Modelling (FMO, MEP, NBO Analysis), and Antioxidant activity of the bis-benzimidazole molecule. J Mol Struct 1259:132729

    Article  CAS  Google Scholar 

  • Paul N, Banerjee T (2022) Study on the extraction of acetamiprid and imidacloprid from an aqueous environment using menthol-based hydrophobic eutectic solvents: quantum chemical and molecular dynamics insights. ACS Sustain Chem Eng 10(13):4227–4246

    Article  CAS  Google Scholar 

  • Piquemal J-P et al (2007) Key role of the polarization anisotropy of water in modeling classical polarizable force fields. J Phys Chem A 111(33):8170–8176

    Article  CAS  PubMed  Google Scholar 

  • Pooja K et al (2022) Experimental, theoretical, hirschfeld surface, electronic excitation and molecular docking studies on fomepizole (4-Methyl-1H-pyrazole). J Mol Struct 1256:132549

    Article  CAS  Google Scholar 

  • Qing G, Sun T (2012) The transformation of chiral signals into macroscopic properties of materials using chirality-responsive polymers. NPG Asia Mater 4(1):e4–e4

    Article  Google Scholar 

  • Randazzo R et al (2015) Hierarchical effect behind the supramolecular Chirality of silver (I)–cysteine coordination polymers. J Phys Chem B 119(14):4898–4904

    Article  CAS  PubMed  Google Scholar 

  • Rhaman MM, Powell DR, Hossain MA (2017) Supramolecular assembly of uridine monophosphate (UMP) and thymidine monophosphate (TMP) with a dinuclear copper (II) receptor. ACS Omega 2(11):7803–7811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russo E et al (2022) Optomechanical two-photon hopping. http://arxiv.org/abs/2208.05803

  • Sakurai S et al (2022) Palladium-catalyzed siloxycyclopropanation of alkenes using acylsilanes. J Am Chem Soc 144:1099–1105

    Article  CAS  PubMed  Google Scholar 

  • Shustova NB et al (2013) Selective turn-on ammonia sensing enabled by high-temperature fluorescence in metal–organic frameworks with open metal sites. J Am Chem Soc 135(36):13326–13329

    Article  CAS  PubMed  Google Scholar 

  • Soman R, Sujatha S, Arunkumar C (2014) Quantitative crystal structure analysis of fluorinated porphyrins. J Fluorine Chem 163:16–22

    Article  CAS  Google Scholar 

  • Song J-B et al (2020) Crystal structures, red-shifted luminescence and iodide-anion recognition properties of four novel D-A type Zn (ii) complexes. Dalton Trans 49(14):4358–4368

    Article  CAS  PubMed  Google Scholar 

  • Song W-J et al (2021) Controllable synthesis of two adenosine 5′-monophosphate nucleotide coordination polymers via pH regulation: crystal structure and Chirality. Dalton Trans 50(13):4713–4719

    Article  CAS  PubMed  Google Scholar 

  • Spackman MA, Jayatilaka D (2009) Hirshfeld surface analysis. CrystEngComm 11(1):19–32

    Article  CAS  Google Scholar 

  • Sullenger BA, Gilboa E (2002) Emerging clinical applications of RNA. Nature 418(6894):252–258

    Article  CAS  PubMed  Google Scholar 

  • Sultana A et al (2022) Fabrication of stable ZnO/Zn–Al/Al2O3 superhydrophobic material on aluminum substrate for high photocatalytic and antibacterial activity. Chem Papers 76:5159–5175

    Article  CAS  Google Scholar 

  • Tian X et al (2022) From oxides to oxysulfides: the mixed-anion GeS3O unit induces huge improvement in the non-linear optical effect and optical anisotropy for potential non-linear optical materials. RSC Adv 12(25):16296–16300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Lu S (2022) The light of carbon dots: from mechanism to applications. Matter 5(1):110–149

    Article  Google Scholar 

  • Wang P et al (2021) A highly selective “turn-on” water-soluble fluorescent sensor for gallium ion detection. RSC Adv 11(32):19747–19754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang D et al (2022) A novel 2-(Aminomethyl) pyridineH2PO4 crystal with second-order non-linear optical performance. CrystEngComm 24(35):6232–6238

    Article  CAS  Google Scholar 

  • Wang L et al (2022) Assembling of perylene, naphthalene, and pyromellitic diimide-based materials and their third-order nonlinear optical properties. J Phys Chem A 126(6):870–878

    Article  CAS  PubMed  Google Scholar 

  • Yahya M, Nural Y, Seferoğlu Z (2022) Recent advances in the non-linear optical (NLO) properties of phthalocyanines: a review. Dyes Pigm 198:109960

    Article  CAS  Google Scholar 

  • Yang W et al (2012) Microwave-assisted modular fabrication of nanoscale luminescent metal–organic framework for molecular sensing. ChemPhysChem 13(11):2734–2738

    Article  CAS  PubMed  Google Scholar 

  • Yaqoob J et al (2022) Optimized non-linear optical (NLO) response of silicon carbide nanosheet by alkali metals doping: a DFT insight. Eur Phys J plus 137(2):233

    Article  CAS  Google Scholar 

  • Yi FY et al (2016) Chemical sensors based on metal–organic frameworks. ChemPlusChem 81(8):675–690

    Article  CAS  PubMed  Google Scholar 

  • Zahid S et al (2022) Silver cluster doped graphyne (GY) with outstanding non-linear optical properties. RSC Adv 12(9):5466–5482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zawirska-Wojtasiak R (2006) Chirality and the nature of food authenticity of aroma. Acta Scientiarum Polonorum Technologia Alimentaria 5(1):21–36

    CAS  Google Scholar 

  • Zhao MT, Singh BP, Prasad PN (1988) A systematic study of polarizability and microscopic third-order optical nonlinearity in thiophene oligomers. J Chem Phys 89(9):5535–5541

    Article  CAS  Google Scholar 

  • Zhou P et al (2013) A continuing tale of Chirality: metal coordination extended axial Chirality of 4, 4′-bipy to 1D infinite chain under cooperation of a nucleotide ligand. CrystEngComm 15(42):8430–8436

    Article  CAS  Google Scholar 

  • Zhou P et al (2015) Supramolecular self-assembly of nucleotide–metal coordination complexes: from simple molecules to nanomaterials. Coord Chem Rev 292:107–143

    Article  CAS  Google Scholar 

  • Zhou W et al (2022) AAg2PS4 (A= K, Na/K): the first-type of noncentrosymmetric alkali metal Ag-based thiophosphates exhibiting excellent second-order non-linear optical performances. Inorg Chem Front 9(19):4990–4998

    Article  CAS  Google Scholar 

  • Zhu Y et al (2021) Conformation locking of the pentose ring in nucleotide monophosphate coordination polymers via π–π stacking and metal-ion coordination. Inorg Chem 61(2):818–829

    Article  PubMed  Google Scholar 

  • Zou G, Ok KM (2020) Novel ultraviolet (UV) non-linear optical (NLO) materials discovered by chemical substitution-oriented design. Chem Sci 11(21):5404–5409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The National Natural Science Foundation, China, supported this work (No. 21471017).

Author information

Authors and Affiliations

Authors

Contributions

Maroof Ahmad khan is the main contributor to this manuscript and has prepared the coordination polymers, performed the structural characterization and wrote the manuscript. Yanhong Shehwas kalsoom, Mubashar Ilyas, Maria Zernab, Muhammad Ashraf, Muhammad Younis, Muhammad Javed Iqbal, Pengfei Wang, Umer Younis, Javed Iqbal are the project participants. Prof. H. Li is the project leader and corresponding author of this manuscript.

Corresponding author

Correspondence to Hui Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4195 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.A., Zhu, Y., Kalsoom, S. et al. Self-assembly for hybrid biomaterial of uridine monophosphate to enhance the optical phenomena. Chem. Pap. 77, 1843–1860 (2023). https://doi.org/10.1007/s11696-022-02556-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-022-02556-8

Keywords

Navigation