Skip to main content
Log in

Spray pyrolysis-assisted fabrication of Eu-doped ZnO thin films for antibacterial activities under visible light irradiation

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

This study reports the fabrication and characterization of zinc oxide (ZnO) and europium-doped ZnO (Eu-doped ZnO) films and their antibacterial activities. The spray pyrolysis method was used to synthesize ZnO and 1, 2, 3, and 4% Eu-doped ZnO thin films on the glass substrate. The fabricated Eu-ZnO thin films were characterized using x-ray diffraction, Fourier transforms infrared spectroscopy, UV–vis spectroscopy, field emission scanning electron microscopy, and x-ray photoelectron spectroscopy. These characterization techniques confirm the successful fabrications of the ZnO and Eu-doped ZnO thin films. It was found that the increase in Eu concentration affects the lattice parameters and the crystallite size without changing the ZnO wurtzite structure. Fabricated ZnO and Eu-doped ZnO films were tested for antibacterial activities against Escherichia coli (E. coli, ATCC 25,922) under visible light irradiation. This is the first antibacterial study of the Eu-ZnO films obtained by the spray pyrolysis method. Improved antibacterial activities were found against E. coli by Eu-doped ZnO films under visible light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdelfatah M, Salah H et al (2021) Insight into Co concentrations effect on the structural, optical, and photoelectrochemical properties of ZnO rod arrays for optoelectronic applications. J Alloy Compd 873:159875

    Article  CAS  Google Scholar 

  • Al Ghamdi A, Nagat A et al (2011) Study of the switching phenomena of TlGaS2 single crystals. Appl Surf Sci 257(8):3205–3210

    Article  CAS  Google Scholar 

  • Al-Shomar S (2021) Synthesis and characterization of Eu3+ doped TiO2 thin films deposited by spray pyrolysis technique for photocatalytic application. Mater Res Exp 8(2):026402

    Article  CAS  Google Scholar 

  • Althumairi NA, I Baig et al (2022) Characterization of Eu doped ZnO micropods prepared by chemical bath deposition on p-Si substrate. Vacuum: 110874.

  • Bedrouni M, Kharroubi B et al (2021) Effect of indium incorporation, stimulated by UHV treatment, on the chemical, optical and electronic properties of ZnO thin film. Opt Mater 111:110560

    Article  CAS  Google Scholar 

  • Bouslama h M, Ouerdane A et al (2020) Chemical, morphological and optical properties of undoped and Cu-doped ZnO thin films submitted to UHV treatment. Appl Surf Sci 520:146302

    Article  Google Scholar 

  • Burstein E (1954) Anomalous optical absorption limit in InSb. Phys Rev 93(3):632

    Article  CAS  Google Scholar 

  • Cacciotti I, Bianco A et al (2011) Synthesis, thermal behaviour and luminescence properties of rare earth-doped titania nanofibers. Chem Eng J 166(2):751–764

    Article  CAS  Google Scholar 

  • Chastain J, King RC Jr (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation 40:221

    Google Scholar 

  • Cui Y-X, Zhang J-G et al (2013) Si-doped diamond films prepared by chemical vapour deposition. Trans Nonferrous Metals Soc China 23(10):2962–2970

    Article  CAS  Google Scholar 

  • Dadi R, Kerignard E et al (2021) Evaluation of antibacterial efficiency of zinc oxide thin films nanoparticles against nosocomial bacterial strains. Chem Eng Trans

  • Dhara S, Imakita K et al (2014) Europium doping induced symmetry deviation and its impact on the second harmonic generation of doped ZnO nanowires. Nanotechnology 25(22):225202

    Article  PubMed  Google Scholar 

  • Fenniche F, Henni A et al (2022) Electrochemical synthesis of reduced graphene oxide-wrapped polyaniline nanorods for improved photocatalytic and antibacterial activities. J Inorg Organomet Polym Mater 32(3):1011–1025

    Article  CAS  Google Scholar 

  • da Fonseca AFV, Siqueira RL et al (2018) A theoretical and experimental investigation of Eu-doped ZnO nanorods and its application on dye sensitized solar cells. J Alloy Compd 739:939–947

    Article  Google Scholar 

  • Fu Y, He D et al (2020) Photocarrier dynamics in TlGaS2 Nanoflakes and van der waals heterostructures with hexagonal boron nitride and WS2 nanoflakes: implications for optoelectronic applications. ACS Appl Nano Materials 3(9):8702–8707

    Article  CAS  Google Scholar 

  • Godoy-Gallardo M, Eckhard U et al (2021) Antibacterial approaches in tissue engineering using metal ions and nanoparticles: from mechanisms to applications. Bioactive Mater 6(12):4470–4490

    Article  CAS  Google Scholar 

  • Haman Z, Kibbou M et al (2021) Structural, electronic and optical properties of two-dimensional Janus transition metal oxides MXO (M= Ti, Hf and Zr; X= S and Se) for photovoltaic and opto-electronic applications. Physica B 604:412621

    Article  CAS  Google Scholar 

  • Hasabeldaim E, Ntwaeaborwa O et al (2020) Pulsed laser deposition of a ZnO: Eu3+ thin film: Study of the luminescence and surface state under electron beam irradiation. Appl Surf Sci 502:144281

    Article  CAS  Google Scholar 

  • He L, Meng J et al (2020) Investigation of 4f-related electronic transitions of rare-earth doped ZnO luminescent materials: insights from first-principles calculations. ChemPhysChem 21(1):51–58

    Article  CAS  PubMed  Google Scholar 

  • Hwang DW, Lee JS et al (2003) Electronic band structure and photocatalytic activity of Ln2Ti2O7 (Ln= La, Pr, Nd). J Phys Chem B 107(21):4963–4970

    Article  CAS  Google Scholar 

  • Iconaru SL, Chapon P, et al. (2014). Antimicrobial activity of thin solid films of silver doped hydroxyapatite prepared by sol-gel method. The Sci World J.

  • Jaisai M, Baruah S et al (2012) Paper modified with ZnO nanorods–antimicrobial studies. Beilstein J Nanotechnol 3(1):684–691

    Article  PubMed  PubMed Central  Google Scholar 

  • Jansson T, Clare-Salzler ZJ et al (2012) Antibacterial effects of zinc oxide nanorod surfaces. J Nanosci Nanotechnol 12(9):7132–7138

    Article  CAS  PubMed  Google Scholar 

  • Kayani ZN, Bashir H et al (2019) Optical properties and antibacterial activity of V doped ZnO used in solar cells and biomedical applications. Mater Res Bull 115:121–129

    Article  CAS  Google Scholar 

  • Khan MM, Harunsani MH et al (2020) Antibacterial Studies of ZnO and Cu-Doped ZnO Nanoparticles Synthesized Using Aqueous Leaf Extract of Stachytarpheta jamaicensis. BioNanoScience 10(4):1037–1048

    Article  Google Scholar 

  • Kim D, Jin Y-H et al (2015) Blue-silica by Eu 2+-activator occupied in interstitial sites. RSC Adv 5(91):74790–74801

    Article  CAS  Google Scholar 

  • Kim Y, Kaczer B et al (2021) Cyclic thermal effects on devices of two-dimensional layered semiconducting materials. Adv Electron Mater 7(9):2100348

    Article  CAS  Google Scholar 

  • Layek A, Banerjee S et al (2016) Synthesis of rare-earth doped ZnO nanorods and their defect–dopant correlated enhanced visible-orange luminescence. RSC Adv 6(42):35892–35900

    Article  CAS  Google Scholar 

  • Liu J, Rojas-Andrade MD et al (2018) Photo-enhanced antibacterial activity of ZnO/graphene quantum dot nanocomposites. Nanoscale 10(1):158–166

    Article  CAS  Google Scholar 

  • Manoharan C, Pavithra G et al (2015) Effect of In doping on the properties and antibacterial activity of ZnO films prepared by spray pyrolysis. Spectrochim Acta Part A Mol Biomol Spectrosc 149:793–799

    Article  CAS  Google Scholar 

  • Mathew S, Ganguly P et al (2018) Cu-doped TiO2: visible light assisted photocatalytic antimicrobial activity. Appl Sci 8(11):2067

    Article  CAS  Google Scholar 

  • Mir N (2022) Rare earth–doped semiconductor nanomaterials. Advanced rare earth-based ceramic nanomaterials. Elsevier, Amsterdam, pp 291–338

    Book  Google Scholar 

  • Munawar T, Nadeem MS et al (2021) Rare earth metal co-doped Zn0· 9La0 05M0 05O (M= Yb, Sm, Nd) nanocrystals; energy gap tailoring, structural, photocatalytic and antibacterial studies. Mater Sci Semiconduct Process 122:105485

    Article  CAS  Google Scholar 

  • Murtaza A, Zuo W-L et al (2022) Robust ferromagnetism in rare-earth and transition metal co-doped ZnO nanoparticles for spintronics applications. Mater Lett 310:131479

    Article  CAS  Google Scholar 

  • Mustafaeva S (2009) Photoelectric and X-ray dosimetric properties of TlGa0. 97Mn0. 03S2 single crystals. Inorg Mater 45(6):602–605

    Article  CAS  Google Scholar 

  • Najafi M, Haratizadeh H (2015) Synthesize and optical properties of ZnO: Eu microspheres based nano-sheets at direct and indirect excitation. Int J Nanosci Nanotechnol 11(2):101–113

    Google Scholar 

  • Nundy S, Ghosh A et al (2021) Role of hafnium doping on wetting transition tuning the wettability properties of ZnO and doped thin films: self-cleaning coating for solar application. ACS Appl Mater Interfaces 13(21):25540–25552

    Article  CAS  PubMed  Google Scholar 

  • Okeke I, Agwu K et al (2021) Impact of particle size and surface defects on antibacterial and photocatalytic activities of undoped and Mg-doped ZnO nanoparticles, biosynthesized using one-step simple process. Vacuum 187:110110

    Article  CAS  Google Scholar 

  • Okyay TO, Bala RK et al (2015) Antibacterial properties and mechanisms of toxicity of sonochemically grown ZnO nanorods. RSC Adv 5(4):2568–2575

    Article  CAS  Google Scholar 

  • Padmavathy N, Vijayaraghavan R (2008). Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci Technol Adv Mater.

  • Poongodi G, Anandan P et al (2015) Studies on visible light photocatalytic and antibacterial activities of nanostructured cobalt doped ZnO thin films prepared by sol–gel spin coating method. Spectrochim Acta Part A Mol Biomol Spectrosc 148:237–243

    Article  CAS  Google Scholar 

  • Puspasari V, Ridhova A et al. (2022a). ZnO-based antimicrobial coatings for biomedical applications. Bioprocess and Biosyst Eng.

  • Puspasari V, Ridhova A et al. (2022b). ZnO-based antimicrobial coatings for biomedical applications. Bioprocess and Biosyst Eng: 1–25.

  • Rahman A, Harunsani MH et al (2021a) Antioxidant and antibacterial studies of phytogenic fabricated ZnO using aqueous leaf extract of Ziziphus mauritiana Lam. Chem Pap 75(7):3295–3308

    Article  CAS  Google Scholar 

  • Rahman A, Tan AL et al (2021b) Visible light induced antibacterial and antioxidant studies of ZnO and Cu-doped ZnO fabricated using aqueous leaf extract of Ziziphus mauritiana Lam. J Environ Chem Eng 9(4):105481

    Article  CAS  Google Scholar 

  • Rana S, Kalaichelvan P (2011) Antibacterial activities of metal nanoparticles. Antibacterial Activit Metal Nanoparticl 11(02):21–23

    Google Scholar 

  • Sadek Kadari, A., A. N. Ech-Chergui, et al (2021) Atomic mapping of Li: ZnO thin films and its spectroscopic analysis. Inorg Chem Commun 132:108852

  • Selvaraju C, Karthick R et al (2019) The modification of structural, optical and antibacterial activity properties of rare earth gadolinium-doped ZnO nanoparticles prepared by co-precipitation method. J Inorg Organomet Polym Mater 29(3):776–782

    Article  CAS  Google Scholar 

  • Standards NCfCL and Barry AL (1999) Methods for determining bactericidal activity of antimicrobial agents: approved guideline, National Committee for Clinical Laboratory Standards Wayne, PA

  • Stoyanova D, Ivanova I et al (2017) Antibacterial activity of thin films TiO2 doped with Ag and Cu on Gracilicutes and Firmicutes bacteria. BioDiscovery 20:e21596

    Article  Google Scholar 

  • Sudhaparimala S (2018) Effect of Europium (III) Oxide doping on the nanoscale ceramic Stannates (MSnO3) of Ca, Ba upon photo luminescence, catalytic degradation and anti-microbial activity–Green approach. Mater Sci (2): 185–196

  • Tan ST, Chen B et al (2005) Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition. J Appl Phys 98(1):013505

    Article  Google Scholar 

  • Tauc J (1974) Optical properties of amorphous semiconductors. Amorphous and liquid semiconductors. Springer, Berlin, pp 159–220

    Google Scholar 

  • Taylor E, Webster TJ (2011) Reducing infections through nanotechnology and nanoparticles. Int J Nanomed 6:1463

    CAS  Google Scholar 

  • Tirumalareddygari SR, Guddeti PR et al (2018) A critical study of the optical and electrical properties of transparent and conductive Mo-doped ZnO films by adjustment of Mo concentration. Appl Surf Sci 458:333–343

    Article  CAS  Google Scholar 

  • Tsuji BT, Yang JC et al (2008) In vitro pharmacodynamics of novel rifamycin ABI-0043 against Staphylococcus aureus. J Antimicrob Chemother 62(1):156–160

    Article  CAS  PubMed  Google Scholar 

  • Valeur B, Berberan-Santos MN (2012) Molecular fluorescence: principles and applications. John Wiley & Sons, US

    Book  Google Scholar 

  • Vijayalakshmi K, Sivaraj D (2015) Enhanced antibacterial activity of Cr doped ZnO nanorods synthesized using microwave processing. RSC Adv 5(84):68461–68469

    Article  CAS  Google Scholar 

  • Vinitha V, Preeyanghaa M et al (2021) Two is better than one: Catalytic, sensing and optical applications of doped zinc oxide nanostructures. Emergent Mater 4(5):1093–1124

    Article  CAS  Google Scholar 

  • Wahab R, Mishra A et al (2012) Fabrication, growth mechanism and antibacterial activity of ZnO micro-spheres prepared via solution process. Biomass Bioenerg 39:227–236

    Article  CAS  Google Scholar 

  • Öztas M, Bedir M (2008) Thickness dependence of structural, electrical and optical properties of sprayed ZnO: Cu films. Thin Solid Films 516(8):1703–1709

    Article  Google Scholar 

Download references

Acknowledgements

This work is a part of PRFU project N B00L02UN460120220001 supported by Belhadj Bouchaib Ain-Temouchenet University and of Ministry of Research and Innovation, Core Program, Project PN19-35 02 03, Algeria.

Author information

Authors and Affiliations

Authors

Contributions

ASK: Experiments, films deposition, and writing, ANE-C: Conceptualizing and writing, MMK: Conceptualizing and writing, AP: SEM and EDX analysis and writing, YK: Antibacterial activity analysis and writing, CL: FT-IR analysis, DS: XRD analysis. LB-T: SEM and EDX analysis, MG: XPS analysis and writing, AZ: spectroscopy analysis, KD-K: Formal analysis and investigation, BA: Supervisor.

Corresponding authors

Correspondence to Abdelkader Nebatti Ech-Chergui or Mohammad Mansoob Khan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ech-Chergui, A.N., Kadari, A.S., Khan, M.M. et al. Spray pyrolysis-assisted fabrication of Eu-doped ZnO thin films for antibacterial activities under visible light irradiation. Chem. Pap. 77, 1047–1058 (2023). https://doi.org/10.1007/s11696-022-02543-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-022-02543-z

Keywords

Navigation