Skip to main content
Log in

Comprehensive performance analysis of kinetic models used to estimate asphaltene adsorption kinetics on nanoparticles

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

This research study aims to conduct a rigorous comparative performance analysis of four different kinetic models used to predict asphaltene adsorption kinetic on nanoparticles. The models included in this study were zero-order kinetic model, pseudo-first-order model, pseudo-second-order kinetic model and the Elovich model. The models were implemented on published experimental datasets present in the literature. The study discusses the working and behaviour of kinetic models while predicting asphaltene adsorption kinetic rates on three different concentrations (taken as three cases) of fumed silica nanoparticles. The model prediction results are analysed both through statistical parameters (MAE and R2) and graphically through cross-plots and relative plots. In all cases, it was observed that experimental kinetic adsorption data generated in later times of the experiment satisfy models more precisely as compared to the experimental data yielded in earlier times. This study also proved and confirmed by validation dataset that the pseudo-second-order kinetic model is the best kinetic model (R2 of 0.999) followed by the pseudo-first-order model and then the Elovich model. The last rank concerning accuracy was achieved by zero-order kinetic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

Download references

Funding

This is self-funded research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Imran Ali.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S.I., Lalji, S.M., Awan, Z. et al. Comprehensive performance analysis of kinetic models used to estimate asphaltene adsorption kinetics on nanoparticles. Chem. Pap. 77, 1017–1031 (2023). https://doi.org/10.1007/s11696-022-02539-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-022-02539-9

Keywords

Navigation