Skip to main content
Log in

Studies on oxygen evolution reaction performance of porous Co3O4–NiO–B2O3 composites

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript


In this article, Co3O4–NiO–B2O3 composites were synthesized via a simple solution combustion method where B2O3 composition is varied from 0 to 50%. The oxygen evolution performance of the Co3O4–NiO–B2O3 composites was investigated. The 40% of B2O3 added Co3O4–NiO composite exhibits an enhanced OER performance where it requires low overpotential of 322 mV (1.54 V vs. RHE) to reach the current density of 50 mA cm−2, which is much lower than that of the 738 mV (1.96 V vs. RHE) and 492 mV (1.72 V vs. RHE) exhibited by bare screen printed electrode (SPE) and pristine Co3O4–NiO composite, respectively. The enhanced OER performance is attributed to significant enhancement in the accessible surface active sites and decrease in charge transfer resistance. Further, the NCB40 shows excellent OER stability and durability over 25 h of continuous electrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others


Download references


The authors wish to thank their parent institution for their extended support and encourage to carry out this research work.

Author information

Authors and Affiliations


Corresponding author

Correspondence to A. S. Jagadisha.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4051 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathla, K.S.G., Jagadisha, A.S., Nagaraja, E. et al. Studies on oxygen evolution reaction performance of porous Co3O4–NiO–B2O3 composites. Chem. Pap. 77, 867–875 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: