Skip to main content

Advertisement

Log in

Synergistic effect of esterification and densification on structural modification of CNT yarn for efficient interfacial performance

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Chemically modified carbon nanotube (CNT) fibers and CNT yarns prepared by a simple twisting method, both result in weak mechanical properties limiting their practical application. Therefore, in this paper, the interfacial properties of CNT yarn have been improved remarkably by introducing a two-stage strategy, i.e., by inter-tube cross-linking and densification of CNTs within CNT yarn. For this purpose, multiwall carbon nanotube film was chemically modified using acid and alcohol to induce ester bonds among CNTs, and then further densified by the wet compression method using acetone as a lubricant. After cross-linking and densification, a compact structure was observed by the SEM and TEM techniques. The product CNT yarn showed significant enhancements in mechanical properties due to the strong chemical interactions among the CNTs. The tensile strength and Young’s modulus of the CNT yarn increased from 131 to 991.5 MPa and 0.7 to 6.0 GPa, respectively. The interactions induced by inter-tube cross-linking and densification were confirmed by TGA, FTIR, and XPS analyses and further quantified by the extent of functionalization. In addition, the interfacial shear strength of the cross-linked and densified CNT yarn was increased from 15 to 60 MPa compared with the pristine CNT yarn. Therefore, the enhanced mechanical strength of CNT yarns indicates their promising potential in a variety of applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alemán B, Reguero V, Mas B, Vilatela JJ (2015) Strong carbon nanotube fibers by drawing inspiration from polymer fiber spinning. ACS Nano 9(7):7392–7398

    Article  Google Scholar 

  • Anike JC, Belay K, Abot JL (2018) Piezoresistive response of carbon nanotube yarns under tension: parametric effects and phenomenology. New Carbon Mater 33(2):140–154

    Article  CAS  Google Scholar 

  • Aouraghe MA, Xu F, Liu X, Qiu Y (2019) Flexible, quickly responsive and highly efficient E-heating carbon nanotube film. Compos Sci Technol 183:107824

    Article  CAS  Google Scholar 

  • Aouraghe MA, Mengjie Z, Qiu Y, Fujun X (2021) Low-voltage activating, fast responding electro-thermal actuator based on carbon nanotube film/PDMS composites. Adv Fiber Mater 3(1):38–46

    Article  CAS  Google Scholar 

  • Beese AM, Wei X, Sarkar S, Ramachandramoorthy R, Roenbeck MR, Moravsky A, Loutfy RO (2014) Key factors limiting carbon nanotube yarn strength: exploring processing-structure-property relationships. ACS Nano 8(11):11454–11466

    Article  CAS  Google Scholar 

  • Boncel S, Sundaram RM, Windle AH, Koziol KK (2011) Enhancement of the mechanical properties of directly spun CNT fibers by chemical treatment. ACS Nano 5(12):9339–9344

    Article  CAS  Google Scholar 

  • Cai JY, Min J, McDonnell J, Church JS, Easton CD, Humphries W, Woodhead AL (2012) An improved method for functionalisation of carbon nanotube spun yarns with aryldiazonium compounds. Carbon 50(12):4655–4662

    Article  CAS  Google Scholar 

  • Chen M, Wang Z, Li K, Wang X, Wei L (2021) Elastic and stretchable functional fibers: a review of materials, fabrication methods, and applications. Adv Fiber Mater 3(1):1–13

    Article  Google Scholar 

  • Cho H, Lee H, Oh E, Lee SH, Park J, Park HJ, Lee WJ (2018) Hierarchical structure of carbon nanotube fibers, and the change of structure during densification by wet stretching. Carbon 136:409–416

    Article  CAS  Google Scholar 

  • Deng F, Lu W, Zhao H, Zhu Y, Kim BS, Chou TW (2011) The properties of dry-spun carbon nanotube fibers and their interfacial shear strength in an epoxy composite. Carbon 49(5):1752–1757

    Article  CAS  Google Scholar 

  • Di J, Zhang X, Yong Z, Zhang Y, Li D, Li R, Li Q (2016) Carbon-nanotube fibers for wearable devices and smart textiles. Adv Mater 28(47):10529–10538

    Article  CAS  Google Scholar 

  • dos Santos AS, de Oliveira TC, Rodrigues KF, Silva AAC, Coppio GJL, da Silva Fonseca BC, Cividanes LDS (2021) Amino-functionalized carbon nanotubes for effectively improving the mechanical properties of pre-impregnated epoxy resin/carbon fiber. J Appl Polym Sci 138:51355

    Article  Google Scholar 

  • Evora MC, Lu X, Hiremath N, Kang NG, Hong K, Uribe R, Mays J (2018) Single-step process to improve the mechanical properties of carbon nanotube yarn. Beilstein J Nanotechnol 9(1):545–554

    Article  CAS  Google Scholar 

  • Fogden SA, Howard CA, Heenan RK, Skipper NT, Shaffer MS (2012) Scalable method for the reductive dissolution, purification, and separation of single-walled carbon nanotubes. ACS Nano 6(1):54–62

    Article  CAS  Google Scholar 

  • Ganegoda H, Jensen DS, Olive D, Cheng L, Segre CU, Linford MR, Terry J (2012) Photoemission studies of fluorine functionalized porous graphitic carbon. J Appl Phys 111(5):053705

    Article  Google Scholar 

  • Guan F, Han Z, Jin M, Wu Z, Chen Y, Chen S, Wang H (2021) Durable and flexible bio-assembled RGO-BC/BC bilayer electrodes for pressure sensing. Adv Fiber Mater 3(2):128–137

    Article  CAS  Google Scholar 

  • Guo F, Li C, Wei J, Xu R, Zhang Z, Cui X, Wu D (2015) Fabrication of highly conductive carbon nanotube fibers for electrical application. Mater Res Express 2(9):095604

    Article  Google Scholar 

  • Hashim DP, Narayanan NT, Romo-Herrera JM, Cullen DA, Hahm MG, Lezzi P, Ganguli S (2012) Covalently bonded three-dimensional carbon nanotube solids via boron induced nanojunctions. Sci Rep 2:363

    Article  Google Scholar 

  • Hou G, Wang G, Deng Y, Zhang J, Nshimiyimana JP, Chi X, Zhang Z (2016) Effective enhancement of the mechanical properties of macroscopic single-walled carbon nanotube fibers by pressure treatment. RSC Adv 6(99):97012–97017

    Article  CAS  Google Scholar 

  • Idris A, Man Z, Maulud AS, Bustam MA, Mannan HA, Ahmed I (2020) Investigation on particle properties and extent of functionalization of silica nanoparticles. Appl Surf Sci 506:144978

    Article  CAS  Google Scholar 

  • Im YO, Lee SH, Kim T, Park J, Lee J, Lee KH (2017) Utilization of carboxylic functional groups generated during purification of carbon nanotube fiber for its strength improvement. Appl Surf Sci 392:342–349

    Article  CAS  Google Scholar 

  • Jiang C, Yang X, Zhao J, Li Q, Zhang KQ, Zhang X, Li Q (2018) Densifying carbon nanotubes on assembly surface by the self-contraction of silk fibroin. Appl Surf Sci 436:66–72

    Article  CAS  Google Scholar 

  • Jung Y, Kim T, Park CR (2015) Effect of polymer infiltration on structure and properties of carbon nanotube yarns. Carbon 88:60–69

    Article  CAS  Google Scholar 

  • Jung Y, Cho YS, Lee JW, Oh JY, Park CR (2018) How can we make carbon nanotube yarn stronger? Compos Sci Technol 166:95–108

    Article  CAS  Google Scholar 

  • Kaynak N, Önen A, Karahasanoğlu M (2018) Photoactive multi-walled carbon nanotubes: synthesis and utilization of benzoin functional MWCNTs. J Mater Sci 53(13):9598–9610

    Article  CAS  Google Scholar 

  • Kim H, Lee J, Park B, Sa JH, Jung A, Kim T, Lee KH (2016) Improving the tensile strength of carbon nanotube yarn via one-step double [2 + 1] cycloadditions. Korean J Chem Eng 33(1):299–304

    Article  CAS  Google Scholar 

  • Kim HJ, Lee JK, You NH, Kim SM, Hwang JY, Goh M, Ku BC (2018) Mechanical and electrical properties of carbon nanotube fibers from impregnation with poly (vinyl alcohol)/poly (acrylic acid) and subsequent thermal condensation. Polym Compos 39(3):971–977

    Article  CAS  Google Scholar 

  • Krieg AS, King JA, Odegard GM, Leftwich TR, Odegard LK, Fraley PD, Park JG (2021) Mechanical properties and characterization of epoxy composites containing highly entangled as-received and acid treated carbon nanotubes. Nanomaterials 11(9):2445

    Article  CAS  Google Scholar 

  • Kujur S, Pathak DD (2020) Reduced graphene oxide-immobilized iron nanoparticles Fe (0)@ rGO as heterogeneous catalyst for one-pot synthesis of series of propargylamines. Res Chem Intermed 46(1):369–384

    Article  CAS  Google Scholar 

  • Li YL, Kinloch IA, Windle AH (2004) Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 304(5668):276–278

    Article  CAS  Google Scholar 

  • Li S, Zhang X, Zhao J, Meng F, Xu G, Yong Z, Li Q (2012) Enhancement of carbon nanotube fibres using different solvents and polymers. Compos Sci Technol 72(12):1402–1407

    Article  CAS  Google Scholar 

  • Li W, Xu F, Liu W, Gao Y, Zhang K, Zhang X, Qiu Y (2018) Flexible strain sensor based on aerogel-spun carbon nanotube yarn with a core-sheath structure. Compos A 108:107–113

    Article  CAS  Google Scholar 

  • Li Q, Ding C, Yuan W, Xie R, Zhou X, Zhao Y, Tian Q (2021) Highly stretchable and permeable conductors based on shrinkable electrospun fiber mats. Adv Fiber Mater 3(5):302–311

    Article  CAS  Google Scholar 

  • Liu G, Zhao Y, Deng K, Liu Z, Chu W, Chen J, Ma W (2008) Highly dense and perfectly aligned single-walled carbon nanotubes fabricated by diamond wire drawing dies. Nano Lett 8(4):1071–1075

    Article  CAS  Google Scholar 

  • Liu K, Sun Y, Zhou R, Zhu H, Wang J, Liu L, Jiang K (2009) Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method. Nanotechnology 21(4):045708

    Article  Google Scholar 

  • Liu K, Sun Y, Lin X, Zhou R, Wang J, Fan S, Jiang K (2010) Scratch-resistant, highly conductive, and high-strength carbon nanotube-based composite yarns. ACS Nano 4(10):5827–5834

    Article  CAS  Google Scholar 

  • Luo X, Weng W, Liang Y, Hu Z, Zhang Y, Yang J, Cheng HM (2019) Multifunctional fabrics of carbon nanotube fibers. J Mater Chem A 7(15):8790–8797

    Article  CAS  Google Scholar 

  • Lv T, Yao Y, Li N, Chen T (2016) Wearable fiber-shaped energy conversion and storage devices based on aligned carbon nanotubes. Nano Today 11(5):644–660

    Article  CAS  Google Scholar 

  • Ma W, Liu L, Yang R, Zhang T, Zhang Z, Song L, Zhou W (2009) Monitoring a micromechanical process in macroscale carbon nanotube films and fibers. Adv Mater 21(5):603–608

    Article  CAS  Google Scholar 

  • Major GH, Avval TG, Moeini B, Pinto G, Shah D, Jain V, Easton CD (2020a) Assessment of the frequency and nature of erroneous X-ray photoelectron spectroscopy analyses in the scientific literature. J Vac Sci Technol A 38(6):061204

    Article  CAS  Google Scholar 

  • Major GH, Fairley N, Sherwood PM, Linford MR, Terry J, Fernandez V, Artyushkova K (2020b) Practical guide for curve fitting in x-ray photoelectron spectroscopy. J Vac Sci Technol A 38(6):061203

    Article  CAS  Google Scholar 

  • Manj RZA, Chen X, Rehman WU, Zhu G, Luo W, Yang J (2018) Big potential from silicon-based porous nanomaterials: in field of energy storage and sensors. Front Chem 6:539

    Article  CAS  Google Scholar 

  • Manj RZA, Zhang F, Rehman WU, Luo W, Yang J (2020) Toward understanding the interaction within Silicon-based anodes for stable lithium storage. Chem Eng J 385:123821

    Article  Google Scholar 

  • O’Brien N, McCarthy M, Curtin W (2013) Improved inter-tube coupling in CNT bundles through carbon ion irradiation. Carbon 51:173–184

    Article  Google Scholar 

  • Paci JT, Furmanchuk AO, Espinosa HD, Schatz GC (2014) Shear and friction between carbon nanotubes in bundles and yarns. Nano Lett 14(11):6138–6147

    Article  CAS  Google Scholar 

  • Park OK, Choi H, Jeong H, Jung Y, Yu J, Lee JK, Park CR (2017) High-modulus and strength carbon nanotube fibers using molecular cross-linking. Carbon 118:413–421

    Article  CAS  Google Scholar 

  • Qiu L, Wang X, Tang D, Zheng X, Norris PM, Wen D, Li Q (2016) Functionalization and densification of inter-bundle interfaces for improvement in electrical and thermal transport of carbon nanotube fibers. Carbon 105:248–259

    Article  CAS  Google Scholar 

  • Rehman WU, Zhang F, Manj RZA, Ma Y, Yang J (2022) Corncob derived porous carbon anode for long-term cycling in low-cost lithium storage. ASME J Electrochem Energy Convers Storage. https://doi.org/10.1115/1.4051984

    Article  Google Scholar 

  • Rodríguez-Manzo JA, Wang MS, Banhart F, Bando Y, Golberg D (2009) Multibranched junctions of carbon nanotubes via cobalt particles. Adv Mater 21(44):4477–4482

    Article  Google Scholar 

  • Ryu S, Lee Y, Hwang JW, Hong S, Kim C, Park TG, Hong SH (2011) High-strength carbon nanotube fibers fabricated by infiltration and curing of mussel-inspired catecholamine polymer. Adv Mater 23(17):1971–1975

    Article  CAS  Google Scholar 

  • Saleemi S, Aouraghe MA, Wei X, Liu W, Liu L, Siyal MI, Bae J, Xu F (2022) Bio-inspired hierarchical carbon nanotube yarn with ester bond cross-linkages towards high conductivity for multifunctional applications. Nanomaterials 12(2):208

    Article  CAS  Google Scholar 

  • Salvetat JP, Bonard JM, Thomson N, Kulik A, Forro L, Benoit W, Zuppiroli L (1999) Mechanical properties of carbon nanotubes. Appl Phys A 69(3):255–260

    Article  CAS  Google Scholar 

  • Santangelo S, Messina G, Faggio G, Abdul Rahim S, Milone C (2012) Effect of sulphuric–nitric acid mixture composition on surface chemistry and structural evolution of liquid-phase oxidised carbon nanotubes. J Raman Spectrosc 43(10):1432–1442

    Article  CAS  Google Scholar 

  • Sezer N, Koç M (2019) Oxidative acid treatment of carbon nanotubes. Surf Interfaces 14:1–8

    Article  CAS  Google Scholar 

  • Shao Y, Xu F, Li W, Zhang K, Zhang C, Li R, Qiu Y (2016) Interfacial strength and debonding mechanism between aerogel-spun carbon nanotube yarn and polyphenylene sulfide. Compos A 88:98–105

    Article  CAS  Google Scholar 

  • Shao Y, Xu F, Marriam I, Liu W, Gao Z, Qiu Y (2019) Quasi-static and dynamic interfacial evaluations of plasma functionalized carbon nanotube fiber. Appl Surf Sci 465:795–801

    Article  CAS  Google Scholar 

  • Shi J, Liu S, Zhang L, Yang B, Shu L, Yang Y, Chen W (2020) Smart textile-integrated microelectronic systems for wearable applications. Adv Mater 32(5):1901958

    Article  CAS  Google Scholar 

  • Shirasu K, Kitayam S, Liu F, Yamamoto G, Hashida T (2021) Molecular dynamics simulations and theoretical model for engineering tensile properties of single-and multi-walled carbon nanotubes. Nanomaterials 11(3):795

    Article  CAS  Google Scholar 

  • Smail F, Boies A, Windle A (2019) Direct spinning of CNT fibres: past, present and future scale up. Carbon 152:218–232

    Article  CAS  Google Scholar 

  • Tran CD, Humphries W, Smith SM, Huynh C, Lucas S (2009) Improving the tensile strength of carbon nanotube spun yarns using a modified spinning process. Carbon 47(11):2662–2670

    Article  CAS  Google Scholar 

  • Tran TQ, Fan Z, Liu P, Myint SM, Duong HM (2016) Super-strong and highly conductive carbon nanotube ribbons from post-treatment methods. Carbon 99:407–415

    Article  CAS  Google Scholar 

  • Wang M, Wang J, Chen Q, Peng LM (2005) Fabrication and electrical and mechanical properties of carbon nanotube interconnections. Adv Funct Mater 15(11):1825–1831

    Article  CAS  Google Scholar 

  • Wang J, Luo X, Wu T, Chen Y (2014) High-strength carbon nanotube fibre-like ribbon with high ductility and high electrical conductivity. Nat Commun 5(1):1–8

    Google Scholar 

  • Wang Z, Wu J, Wei X, Saleemi S, Liu W, Li W, Mariam I, Xu F (2020) Bioinspired microstructure-reorganized behavior of carbon nanotube yarn induced by cyclic stretching training. J Mater Chem C 8(1):117–123

    Article  Google Scholar 

  • Xu F, Wei B, Liu W, Zhu H, Zhang Y, Qiu Y (2015) In-plane mechanical properties of carbon nanotube films fabricated by floating catalyst chemical vapor decomposition. J Mater Sci 50(24):8166–8174

    Article  CAS  Google Scholar 

  • Yi C, Chen X, Gou F, Dmuchowski CM, Sharma A, Park C, Ke C (2017) Direct measurements of the mechanical strength of carbon nanotube-aluminum interfaces. Carbon 125:93–102

    Article  CAS  Google Scholar 

  • Zhang X, Jiang K, Feng C, Liu P, Zhang L, Kong J, Fan S (2006) Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays. Adv Mater 18(12):1505–1510

    Article  CAS  Google Scholar 

  • Zhang S, Zhu L, Minus ML, Chae HG, Jagannathan S, Wong CP, Kowalik J, Roberson LB, Kumar S (2008a) Solid-state spun fibers and yarns from 1-mm long carbon nanotube forests synthesized by water-assisted chemical vapor deposition. J Mater Sci 43(13):4356–4362

    Article  CAS  Google Scholar 

  • Zhang Y, Broekhuis AA, Stuart MC, Fernandez Landaluce T, Fausti D, Rudolf P, Picchioni F (2008b) Cross-linking of multiwalled carbon nanotubes with polymeric amines. Macromolecules 41(16):6141–6146

    Article  CAS  Google Scholar 

  • Zu M, Li Q, Zhu Y, Dey M, Wang G, Lu W, Chou TW (2012) The effective interfacial shear strength of carbon nanotube fibers in an epoxy matrix characterized by a microdroplet test. Carbon 50(3):1271–1279

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Shanghai Natural Science Foundation (Grant No. 20ZR1402200) and Fundamental Research Funds for the Central Universities (Grant No. 2232021G-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fujun Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleemi, S., Mannan, H.A., Idris, A. et al. Synergistic effect of esterification and densification on structural modification of CNT yarn for efficient interfacial performance. Chem. Pap. 77, 75–87 (2023). https://doi.org/10.1007/s11696-022-02467-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-022-02467-8

Keywords

Navigation