Skip to main content

Advertisement

Log in

Combined structure and ligand-based design of dual BACE-1/GSK-3β inhibitors for Alzheimer’s disease

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder that leads to progressive mental, behavioral, and functional decline including learning ability. The extracellular deposition of amyloid-β (Aβ) peptide as diffused and neuritic plaques and hyper-phosphorylation of tau (p-tau) protein accumulated intracellularly as neurofibrillary tangles (NFTs) are considered to be the major pathological hallmarks occurring in the AD brain. Designing of drugs hitting more than one target against multifactorial diseases, like AD, is one of the worthwhile approach in the drug discovery. Identifying the compounds with computer-aided drug design (CADD) significantly saves the limited resources and accelerates the drug development cycles. The enzymes, BACE-1 and GSK-3β are involved in the initiation of Aβ production through the cleavage of extracellular domain of APP and phosphorylation of various substrates, respectively, leading to the cognitive deficiencies in  AD. Thus, targeting BACE-1 and GSK-3β involved in distinct pathological conditions, with single inhibitor, could be conducive approach. In this study, combined structure and ligand-based in silico approach were used to identify potential dual targeting inhibitors. The structure and pharmacophore-based virtual screening, homology modeling, molecular docking, drug-likeness, ADME properties prediction, toxicity risk assessment analysis and molecular dynamics studies were performed to obtain the potential inhibitors. The identified dual inhibitors, i.e., ZINC225531247 and ZINC668197980, are expected to be good leads against BACE-1 and GSK-3β.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bajad NG, Rayala S, Gutti G, Sharma A, Singh M, Kumar A et al (2021) Systematic review on role of structure based drug design (SBDD) in the identification of anti-viral leads against SARS-Cov-2. Curr Res Pharmacol Drug Discov 2:100026

    Article  PubMed  PubMed Central  Google Scholar 

  • Basha SJ, Mohan P, Yeggoni DP, Babu ZR, Kumar PB, Rao AD et al (2018) New flavone-cyanoacetamide hybrids with a combination of cholinergic, antioxidant, modulation of β-amyloid aggregation, and neuroprotection properties as innovative multifunctional therapeutic candidates for Alzheimer’s disease and unraveling their mechanism of action with acetylcholinesterase. Mol Pharm 15(6):2206–2223

    Article  CAS  PubMed  Google Scholar 

  • Bhat R, Xue Y, Berg S, Hellberg S, Ormö M, Nilsson Y et al (2003) Structural insights and biological effects of glycogen synthase kinase 3-specific inhibitor AR-A014418. J Biol Chem 278(46):45937–45945

    Article  CAS  PubMed  Google Scholar 

  • Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T et al (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42(W1):W252–W258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bussi G, Zykova-Timan T, Parrinello M (2009) Isothermal-isobaric molecular dynamics using stochastic velocity rescaling. J Chem Phys 130(7):074101

    Article  PubMed  Google Scholar 

  • Cavalli A, Bolognesi ML, Minarini A, Rosini M, Tumiatti V, Recanatini M et al (2008) Multi-target-directed ligands to combat neurodegenerative diseases. J Med Chem 51(3):347–372

    Article  CAS  PubMed  Google Scholar 

  • Chang WP, Huang X, Downs D, Cirrito JR, Koelsch G, Holtzman DM et al (2011) β-Secretase inhibitor GRL-8234 rescues age-related cognitive decline in APP transgenic mice. FASEB J 25(2):775–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coimbra JR, Marques DF, Baptista SJ, Pereira CM, Moreira PI, Dinis TC et al (2018) Highlights in BACE1 inhibitors for Alzheimer’s disease treatment. Front Chem 6:178

    Article  PubMed  PubMed Central  Google Scholar 

  • Cummings J, Lee G, Ritter A, Sabbagh M, Zhong K et al (2019) Alzheimer’s disease drug development pipeline. Alzheimer’s Dement: Trans Research Clin Interv 5:272–293

    Article  Google Scholar 

  • Daina A, Michielin O, Zoete V (2017) Swiss ADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7(1):1–13

    Article  Google Scholar 

  • De Simone A, Tumiatti V, Andrisano V, Milelli A (2020) Glycogen synthase kinase 3β: a new gold rush in anti-Alzheimer’s disease multitarget drug discovery? Miniperspective J Med Chem 64(1):26–41

    Article  PubMed  Google Scholar 

  • Egan WJ, Merz KM et al (2000) Prediction of drug absorption using multivariate statistics. J Med Chem 43(21):3867–3877

    Article  CAS  PubMed  Google Scholar 

  • Elangovan ND, Dhanabalan AK, Gunasekaran K, Kandimalla R, Sankarganesh DJ (2021) Dynamics. Screening of potential drug for Alzheimer’s disease: a computational study with GSK-3 β inhibition through virtual screening, docking, and molecular dynamics simulation. J Biomole Struct Dyn 39(18):7065–79

    Article  CAS  Google Scholar 

  • Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103(19):8577–8593

    Article  CAS  Google Scholar 

  • Ganeshpurkar A, Singh R, Gore PG, Kumar D, Gutti G, Kumar A et al (2020) Structure-based screening and molecular dynamics simulation studies for the identification of potential acetylcholinesterase inhibitors. Mol Simul 46(3):169–185

    Article  CAS  Google Scholar 

  • Gentles RG, Hu S, Dubowchik GM (2009) Chapter 1 recent advances in the discovery of GSK-3 inhibitors and a perspective on their utility for the treatment of Alzheimer’s disease. Annual reports in medicinal chemistry volume, vol 44. Elsevier, pp 3–26

    Google Scholar 

  • Ghose AK, Viswanadhan VN, Wendoloski J (1999) A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J Comb Chem 1(1):55–68

    Article  CAS  PubMed  Google Scholar 

  • Ghosh AK, Kumaragurubaran N, Hong L, Kulkarni S, Xu X, Miller HB et al (2008) Potent memapsin 2 (β-secretase) inhibitors: design, synthesis, protein-ligand X-ray structure, and in vivo evaluation. Bioorg Med Chem Lett 18(3):1031–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goddard TD, Huang CC et al (2007) Visualizing density maps with UCSF Chimera. J Struct Biol 157(1):281–287

    Article  CAS  PubMed  Google Scholar 

  • Hevener KE, Zhao W, Ball DM, Babaoglu K, Qi J, White SW et al (2009) Validation of molecular docking programs for virtual screening against dihydropteroate synthase. J Chem Inf Model 49(2):444–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Himmelstein DS, Ward SM, Lancia JK, Patterson KR, Binder LI (2012) Tau as a therapeutic target in neurodegenerative disease. Pharmacol Ther 136(1):8–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong L, Turner RT, Koelsch G, Shin D, Ghosh AK, Tang J (2002) Crystal structure of memapsin 2 (β-secretase) in complex with an inhibitor OM00-3. Biochemistry 41(36):10963–10967

    Article  CAS  PubMed  Google Scholar 

  • Hooper C, Killick R, Lovestone S (2008) The GSK3 hypothesis of Alzheimer’s disease. J Neurochem 104(6):1433–1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirchdoerfer RN, Ward AB (2019) Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nat Commun 10(1):1–9

    Article  CAS  Google Scholar 

  • Kumar A, Sharma A (2018) Computational modeling of multi-target-directed inhibitors against Alzheimer’s disease. Computational modeling of drugs against Alzheimer’s disease: Springer p. 533-71

  • Kumar A, Singh AJ (2015) A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Reports 67(2):195–203

    Article  CAS  Google Scholar 

  • Lee S, Park S, Lee I, No KJK. (2007) PreAD-MET Ver. v2. 0, BMDRC: Seoul

  • Lipinski CA (2004) Lead-and drug-like compounds: the rule-of-five revolution. Drug Discov Today: Technol 1(4):337–341

    Article  CAS  Google Scholar 

  • Llorens-Marítin M, Jurado J, Hernández F, Ávila J (2014) GSK-3β, a pivotal kinase in Alzheimer disease. Front Mol Neurosci 7:46

    PubMed Central  Google Scholar 

  • Ly PT, Wu Y, Zou H, Wang R, Zhou W, Kinoshita A et al (2012) Inhibition of GSK3β-mediated BACE1 expression reduces Alzheimer-associated phenotypes. J Clin Invest 123(1):224–235

    Article  PubMed  PubMed Central  Google Scholar 

  • MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck JD, Field MJ et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102(18):3586–3616

    Article  CAS  PubMed  Google Scholar 

  • Martinez A, Gil C, Perez DI (2011) Glycogen synthase kinase 3 inhibitors in the next horizon for Alzheimer’s disease treatment. Int J Alzheimer’s Dis 2011:1–7

    Article  Google Scholar 

  • Martyna GJ, Tobias DJ, Klein ML (1994) Constant pressure molecular dynamics algorithms. J Chem Phys 101(5):4177–4189

    Article  CAS  Google Scholar 

  • Muegge I, Heald SL et al (2001) Simple selection criteria for drug-like chemical matter. J Med Chem 44(12):1841–1846

    Article  CAS  PubMed  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera? A visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    Article  CAS  PubMed  Google Scholar 

  • Reitz C, Mayeux R (2014) Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol 88(4):640–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy K, Kar S, Das RN. (2015) Understanding the basics of QSAR for applications in pharmaceutical sciences and risk assessment: Academic press

  • Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M (2015) PLIP: fully automated protein–ligand interaction profiler. Nucleic Acids Res 43(W1):W443–W447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salo-Ahen OM, Alanko I, Bhadane R, Bonvin AM, Honorato RV, Hossain S et al (2021) Molecular dynamics simulations in drug discovery and pharmaceutical development. Processes 9(1):71

    Article  CAS  Google Scholar 

  • Sharma P, Srivastava P, Seth A, Tripathi PN, Banerjee AG (2019) Comprehensive review of mechanisms of pathogenesis involved in Alzheimer’s disease and potential therapeutic strategies. Prog Neurobiol 174:53–89

    Article  CAS  PubMed  Google Scholar 

  • Studio DJSD, CA, USA. Accelrys Inc. (2013)

  • Sunseri J, Koes DR (2016) Pharmit: interactive exploration of chemical space. Nucleic Acids Res 44(W1):W442–W448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ul Islam B, Tabrez S (2017) Management of Alzheimer’s disease—an insight of the enzymatic and other novel potential targets. Int J Biol Macromol 97:700–709

    Article  CAS  Google Scholar 

  • Veber DF, Johnson SR, Cheng H-Y, Smith BR, Ward KW (2002) Kopple Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45(12):2615–2623

    Article  CAS  PubMed  Google Scholar 

  • Wei D, Jiang X, Zhou L, Chen J, Chen Z, He C et al (2008) Discovery of multitarget inhibitors by combining molecular docking with common pharmacophore matching. J Med Chem 51(24):7882–7888

    Article  CAS  PubMed  Google Scholar 

  • Yan R, Vassar R (2014) Targeting the β secretase BACE1 for Alzheimer’s disease therapy. Lancet Neuro 13(3):319–329

    Article  CAS  Google Scholar 

  • Yang SY (2010) Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov Today 15(11–12):444–450

    Article  CAS  PubMed  Google Scholar 

  • Yang ZR, Chou KC (2004) Bio-support vector machines for computational proteomics. Bioinformatics 20(5):735–741

    Article  CAS  PubMed  Google Scholar 

  • Zeng H, Wu X (2016) Alzheimer’s disease drug development based on computer-aided drug design. Eur Jurnal Med Chem 121:851–863

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Ravi Bhushan Singh would like to thank DST, SERB, New Delhi, for the award of TARE grant to him. NGB, RS, RS, AG, and GG thank Ministry of Education (MoE), New Delhi, India, for the teaching assistantship to them. The resources and support provided by the ‘PARAM Shivay Facility’ under the National Supercomputing Mission, Government of India, at the Indian Institute of Technology (BHU), Varanasi, are gratefully acknowledged. We would also like to acknowledge the computational support received from Centre for Computing and Information Services (CCIS), Indian Institute of Technology (BHU), Varanasi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushil Kumar Singh.

Ethics declarations

Conflict of interests

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1566 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajad, N.G., Swetha, R., Singh, R. et al. Combined structure and ligand-based design of dual BACE-1/GSK-3β inhibitors for Alzheimer’s disease. Chem. Pap. 76, 7507–7524 (2022). https://doi.org/10.1007/s11696-022-02421-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-022-02421-8

Keywords

Navigation