Skip to main content
Log in

An overview on collision dynamics of deformable particles

  • Review
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Interaction dynamics of rigid/deformable particles are included in a wide range of industrial and scientific approaches. The description of the binary collision of particles is required to predict the flow of a concentrated emulsion. The present review introduces the numerical approaches employed to simulate the interaction of two particles and evaluates the impact of deformability, configuration, and flow type on collision dynamics. Two closely interacting drops/bubbles can collide in in-line and side-by-side configurations in Newtonian and non-Newtonian surrounding fluids. Based on the previous investigations, the future trends for the binary collision of deformable particles are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Ar:

Archimedes number

Bo:

Bond number

Ca:

Capillary number

\(d\) :

Particle diameter, m

Eo:

Eötvös number

\(g\) :

Gravity acceleration, m/s2

Ga:

Galileo number

\(F\) :

The force due to surface tension, N

\({F}_{b}\) :

Body force, N

\({\mathrm{F}}_{\mathrm{MP}}\) :

Added mass force, N

\({\mathrm{F}}_{\mathrm{D}}\) :

Drag force, N

\({\mathrm{F}}_{\mathrm{B}}\) :

Buoyancy force, N

\({\mathrm{F}}_{\mathrm{L}}\) :

Shear-induced lift force, N

K:

Solid-fluid viscosity ratio

M:

Mobility potential

Mo:

Morton number

n:

Power-law index

\(n\) :

Unit vector normal to the drop surface, m

S:

Second-order tensor

\(U\) :

Fluid velocity, m/s

\({U}_{p}\) :

Particle velocity, m/s

\(x\) :

Position in an Eulerian coordinate, m

\(X\) :

Position of the front in Lagrangian coordinate, m

\({\delta }^{\beta }\) :

Two- or three-dimensional delta function

\(\epsilon\) :

Dissipation rate

\(\eta\) :

Viscosity ratio

\({\eta }_{K}\) :

Kolmogorov length scale, m

\(\kappa\) :

Twice the mean curvature for three-dimensional flows

\({\kappa }^{^{\prime}}\) :

Consistency index

\(\uplambda\) :

Elastic relaxation time, s

\({\lambda }_{1}\) :

Relaxation time, s

\({\lambda }_{2}\) :

Retardation time, s

\({\mu }_{o}\) :

Zero shear rate

\({\mu }_{\infty }\) :

Infinite shear rate

\({\mu }_{d}\) :

Drop dynamic viscosity, Pa.s

\({\mu }_{f}\) :

Fluid dynamic viscosity, Pa.s

\({\rho }_{d}\) :

Drop density, kg/m3

\({\rho }_{f}\) :

Fluid density, kg/m3

\({\rho }_{l}\) :

Liquid density, kg/m3

\(\sigma\) :

Surface tension, N/m

\(\varphi\) :

Chemical potential

\(\Phi\) :

Volume fraction

\(\Omega\) :

Vorticity tensor

\(\tau\) :

Stress tensor, Pa

References

  • Acrivos A (1983) The breakup of small drops and bubbles in shear flows. Ann N Y Acad Sci 404:1–11

    CAS  Google Scholar 

  • Acrivos A, Lo TS (1978) Deformation and breakup of a single slender drop in an extensional flow. J Fluid Mech 86:641–672

    CAS  Google Scholar 

  • Armandoost P, Bayareh M, Ahmadi Nadooshan A (2018) Study of the motion of a spheroidal drop in a linear shear flow. J Mech Sci Technol 32:2059–2067

    Google Scholar 

  • Balcázar-Arciniega N, Rigola J, Oliva A (2019) DNS of mass transfer from bubbles rising in a vertical channel. Lect Notes Comput Sci 11539:596–610

    Google Scholar 

  • Balla M, Kavuri S, Tripathi MK, Sahu KC, Govindarajan R (2020) Effect of viscosity and density ratios on two drops rising side by side. Phys Rev Fluids. https://doi.org/10.1103/PhysRevFluids.5.013601

    Article  Google Scholar 

  • Barthes-Biesel D, Acrivos A (1973) Deformation and burst of a liquid droplet freely suspended in a linear shear field. J Fluid Mech 61:1–22

    Google Scholar 

  • Bayareh M, Mortazavi S (2009) Geometry effects on the interaction of two equal-sized drops in simple shear flow at finite reynolds numbers. 5th International Conference: Computational methods in multiphase flow. WIT Trans Eng Sci 63:379–388

    Google Scholar 

  • Bayareh M, Mortazavi S (2011) Binary collision of drops in simple shear flow at finite reynolds numbers. Adv Eng Softw 42:604–611

    Google Scholar 

  • Bayareh M, Mortazavi S (2013) Equilibrium position of a buoyant drop in couette and poiseuille flows at finite reynolds numbers. J Mech 29:53–58. https://doi.org/10.1017/jmech.2012.109

    Article  Google Scholar 

  • Bayareh M, Doostmohammadi A, Dabiri S, Ardekani AM (2013) On the rising motion of a drop in stratified fluids. Phys Fluids 25:23029

    Google Scholar 

  • Bayareh M, Dabiri S, Ardekani AM (2016) Interaction between two drops ascending in a linearly stratified fluid. Eur J Mech 60:127–136

    Google Scholar 

  • Benzi R, Succi S, Vergassola M (1992) The lattice Boltzmann equation: theory and applications. Phys Rep 222:145–197

    Google Scholar 

  • Besagni G, Inzoli F, Ziegenhein T (2018) Two-phase bubble columns: a comprehensive review. Chem Engineering 2:1–80

    Google Scholar 

  • Borthakur MP, Nath B, Biswas G (2021) Dynamics of a compound droplet under the combined influence of electric field and shear flow. Phys Rev Fluids 6:23603

    Google Scholar 

  • Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100:335–354

    CAS  Google Scholar 

  • Busuke H, Tatsuo T (1969) Two-dimensional shear flows of linear micropolar fluids. Int J Eng Sci 7:515–522

    Google Scholar 

  • Cahn JW, Hilliard JE (1958) Free energy of a nonuniform system I interfacial free energy. J Chem Phys 28:258–267

    CAS  Google Scholar 

  • Cannon I, Izbassarov D, Tammisola O, Brandt L, Rosti ME (2021) The effect of droplet coalescence on drag in turbulent channel flows. Phys Fluids 33(8):085112. https://doi.org/10.1063/5.0058632

    Article  CAS  Google Scholar 

  • Chen Y, Liu X, Zhao Y (2015) Deformation dynamics of double emulsion droplet under shear. Appl Phys Lett 106:141601

    Google Scholar 

  • Chen Z, Xu J, Wang Y (2019) Gas-liquid-liquid multiphase flow in microfluidic systems – a review. Chem Eng Sci 202:1–14

    CAS  Google Scholar 

  • Chiara LF, Rosti ME, Picano F, Brandt L (2020) Suspensions of deformable particles in poiseuille flows at finite inertia. Fluid Dyn Res 52:65507

    Google Scholar 

  • Chin HB, Han CD (1980) Studies on droplet deformation and breakup. II. breakup of a droplet in nonuniform shear flow. J Rheol 24:1–37

    CAS  Google Scholar 

  • Cooray H, Cicuta P, Vella D (2017) Floating and sinking of a pair of spheres at a liquid–fluid interface. Langmuir 33:1427–1436

    CAS  PubMed  Google Scholar 

  • Crowe CT, Troutt TR, Chung J (1996) Numerical models for two-phase turbulent flows. Annu Rev Fluid Mech 28:11–43

    Google Scholar 

  • Dabiri S, Doostmohammadi A, Bayareh M, Ardekani AM (2015) Rising motion of a swarm of drops in a linearly stratified fluid. Int J Multiph Flow 69:8–17

    CAS  Google Scholar 

  • Das S, Chakraborty S (2018) Influence of complex interfacial rheology on the thermocapillary migration of a surfactant-laden droplet in poiseuille flow. Phys Fluids 30:22103

    Google Scholar 

  • D’Avino G, Maffettone PL (2015) Particle dynamics in viscoelastic liquids. J Nonnewton Fluid Mech 215(80–104):2015

    Google Scholar 

  • Dhiman M, Gupta R, Reddy KA (2021) Hydrodynamic interactions between two side-by-side Janus spheres. Eur J Mech B/Fluids 87:61–74

    Google Scholar 

  • Ding S, Serra CA, Vandamme TF, Yu W, Anton N (2019) Double emulsions prepared by two–step emulsification: history, state-of-the-art and perspective. J Control release 295:31–49

    CAS  PubMed  Google Scholar 

  • Druzhinin OA, Elghobashi S (1998) Direct numerical simulations of bubble-laden turbulent flows using the two-fluid formulation. Phys Fluids 10:685–697

    CAS  Google Scholar 

  • Elghobashi S (2019) Direct numerical simulation of turbulent flows laden with droplets or bubbles. Annu Rev Fluid Mech 51:217–244. https://doi.org/10.1146/annurev-fluid-010518-040401

    Article  Google Scholar 

  • Feng J, Li X, Bao Y, Cai Z, Gao Z (2016) Coalescence and conjunction of two in-line bubbles at low Reynolds numbers. Chem Eng Sci 141:261–270

    CAS  Google Scholar 

  • Friedlander SK (1961) A note on transport to spheres in Stokes flow. AIChE J 7:347–348

    CAS  Google Scholar 

  • Gobert C, Manhart M (2011) Subgrid modelling for particle-LES by spectrally optimised interpolation (SOI). J Comput Phys 230:7796–7820

    CAS  Google Scholar 

  • Goodarzi Z, Ahmadi Nadooshan A, Bayareh M (2018) Numerical investigation of off-centre binary collision of droplets in a horizontal channel. J Brazilian Soc Mech Sci Eng. https://doi.org/10.1007/s40430-018-1075-y

    Article  Google Scholar 

  • Gui Y, Shan C, Zhao J, Wu J (2020) Wall effect on interaction and coalescence of two bubbles in a vertical tube. AIP Adv 10:105210

    Google Scholar 

  • Gumulya M, Utikar RP, Evans GM, Joshi JB, Pareek V (2017) Interaction of bubbles rising inline in quiescent liquid. Chem Eng Sci 166:1–10

    CAS  Google Scholar 

  • Gurumurthy VT, Pushpavanam S (2020) Hydrodynamics of a compound drop in plane poiseuille flow. Phys Fluids. https://doi.org/10.1063/5.0009401

    Article  Google Scholar 

  • Hassanzadeh M, Ahmadi Nadooshan A, Bayareh M (2019) Numerical simulation of the head-on collision of two drops in a vertical channel. J Brazilian Soc Mech Sci Eng. https://doi.org/10.1007/s40430-019-1624-z

    Article  Google Scholar 

  • Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225

    Google Scholar 

  • Ioannou N, Liu H, Zhang YH (2016) Droplet dynamics in confinement. J Comput Sci 17:463–474

    Google Scholar 

  • Joseph DD, Liu YJ, Poletto M, Feng J (1994) Aggregation and dispersion of spheres falling in viscoelastic liquids. J Nonnewton Fluid Mech 54:45–86

    CAS  Google Scholar 

  • Karp JR, Mancilla E, da Silva FS, Legendre D, Zenit R, Morales REM (2021) The dynamics of compound drops at high reynolds numbers: drag, shape, and trajectory. Int J Multiph Flow 142:103699

    CAS  Google Scholar 

  • Khan SA, Shah A, Saeed S (2020) Numerical simulation of the interaction between three equal-sized rising bubbles using the phase-field method. AIP Adv. https://doi.org/10.1063/1.5144963

    Article  Google Scholar 

  • Lee T, Lin CL (2005) A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio. J Comput Phys 206:16–47

    Google Scholar 

  • Lee HM, Bin Choi S, Kim JH, Lee JS (2020) Interfacial behavior of surfactant-covered double emulsion in extensional flow. Phys Rev E 102:53104

    CAS  Google Scholar 

  • Li N, Zhang W, Jiang Z, Chen W (2018) Spatial cross-correlated diffusion of colloids under shear flow. Langmuir 34:10537–10542

    CAS  PubMed  Google Scholar 

  • Liu J, Zhu C, Wang X, Fu T, Ma Y, Li H (2015) Three-dimensional numerical simulation of coalescence and interactions of multiple horizontal bubbles rising in shear-thinning fluids. AIChE J 61:3528–3546

    CAS  Google Scholar 

  • Liu L, Chen J, Wang Z, Mao ZS, Yang C (2018) Internal mass and heat transfer between a single deformable droplet and simple extensional creeping flow. Int J Heat Mass Transf 127:1040–1053

    Google Scholar 

  • Liu X, Wang C, Zhao Y, Chen Y (2018) Shear-driven two colliding motions of binary double emulsion droplets. Int J Heat Mass Transf 121:377–389

    Google Scholar 

  • Liu X, Wang C, Zhao Y, Chen Y (2018) Passing-over motion during binary collision between double emulsion droplets under shear. Chem Eng Sci 183:215–222

    Google Scholar 

  • Liu HR, Ng CS, Chong KL, Lohse D, Verzicco R (2021) An efficient phase-field method for turbulent multiphase flows. J Comput Phys 446:1–32

    Google Scholar 

  • Luo ZY, Bai BF (2016) Dynamics of nonspherical compound capsules in simple shear flow. Phys Fluids. https://doi.org/10.1063/1.4965251

    Article  Google Scholar 

  • Maffettone PL, Minale M (1998) Equation of change for ellipsoidal drops in viscous flow. J Nonnewton Fluid Mech 78:227–241

    CAS  Google Scholar 

  • Magnaudet J, Mercier MJ (2020) Particles, drops, and bubbles moving across sharp interfaces and stratified layers. Annu Rev Fluid Mech 52:61–91

    Google Scholar 

  • Mandal S, ChakrabortyS, (2017) Effect of uniform electric field on the drop deformation in simple shear flow and emulsion shear rheology. Phys Fluids. https://doi.org/10.1063/1.4995473

    Article  Google Scholar 

  • Mathai V, Lohse D, Sun C (2020) Bubbly and buoyant particle-laden turbulent flows. Annu Rev Condens Matter Phys 11:529–559

    Google Scholar 

  • Matsunaga D, Imai Y, Yamaguchi T, Ishikawa T (2015) Rheology of a dense suspension of spherical capsules under simple shear flow. J Fluid Mech 786:110–127

    Google Scholar 

  • Maxey MR, Riley JJ (1983) Equation of motion for a small rigid sphere in a nonuniform flow. Phys Fluids 26:883–889

    Google Scholar 

  • Meenu Agrawal KCS, Gaurav A, Karri B (2021) An experimental study of two identical air bubbles rising side-by-side in water. Phys Fluids. https://doi.org/10.1063/5.0044485

    Article  Google Scholar 

  • Mercier MJ, Wang S, Péméja J, Ern P, Ardekani AM (2019) Settling disks in a linearly stratified fluid. J Fluid Mech. https://doi.org/10.1017/jfm.2019.957

    Article  Google Scholar 

  • Mohammadi Masiri S, Bayareh M, Ahmadi Nadooshan A (2019) Pairwise interaction of drops in shear-thinning inelastic fluids. Korea Aust Rheol J 31:25–34

    Google Scholar 

  • Moosaie A, Shekouhi N, Nouri NM, Manhart M (2015) An algebraic closure model for the DNS of turbulent drag reduction by brownian microfiber additives in a channel flow. J Nonnewton Fluid Mech 226:60–66

    CAS  Google Scholar 

  • Moosaie A, Zarghami-Dehaghani Z, Alinejad Z (2017) Rheology of a dilute suspension of brownian thin disklike particles in a turbulent channel flow. J Nonnewton Fluid Mech 286:104414

    Google Scholar 

  • Nguyen KP, Vu TV (2020) Collision modes of two eccentric compound droplets. Processes. https://doi.org/10.3390/PR8050602

    Article  Google Scholar 

  • Oldroyd JG (1950) On the formulation of rheological equations of state. Proc Roy Soc London 200:523

    CAS  Google Scholar 

  • Olsson E, Kreiss G (2005) A conservative level set method for two phase flow. J Comput Phys 210:225–246

    Google Scholar 

  • Pan DY, Lin YQ, Zhang LX, Shao XM (2016) Motion and deformation of immiscible droplet in plane poiseuille flow at low reynolds number. J Hydrodyn 28:702–708

    Google Scholar 

  • Powell RL (1983) External and internal streamlines and deformation of drops in linear two-dimensional flows. J Colloid Interface Sci 95:148–162

    CAS  Google Scholar 

  • Rosti ME, Brandt L (2018) Suspensions of deformable particles in a couette flow. J Nonnewton Fluid Mech 262:3–11

    CAS  Google Scholar 

  • Santra S, Das S, Chakraborty S (2019) Electric field-induced pinch-off of a compound droplet in poiseuille flow. Phys Fluids. https://doi.org/10.1063/1.5094948

    Article  Google Scholar 

  • Santra S, Mandal S, Chakraborty S (2019) Confinement effect on electrically induced dynamics of a droplet in shear flow. Phys Rev E 100:33101

    CAS  Google Scholar 

  • Sattari A, Hanafizadeh P, Hoorfar M (2020) Multiphase flow in microfluidics: from droplets and bubbles to the encapsulated structures. Adv Colloid Interface Sci. https://doi.org/10.1016/j.cis.2020.102208

    Article  PubMed  Google Scholar 

  • Sattari A, Tasnim N, Hanafizadeh P, Hoorfar M (2021) Motion and deformation of migrating compound droplets in shear-thinning fluids in a microcapillary tube. Phys Fluids 33:53106

    CAS  Google Scholar 

  • Segre S, Silberberg A (1961) Radial particle displacements in poiseuille flow of suspensions. Nature 189:209–210

    Google Scholar 

  • Shan X, Chen H (1993) Lattice Boltzmann model for simulating flows with multiple phases and components. Phys Rev E 47:1815–1819

    CAS  Google Scholar 

  • Shang X, Luo Z, Bai B (2019) Numerical simulation of dynamic behavior of compound droplets on solid surface in shear flow by front-tracing method. Chem Eng Sci 193:325–335

    CAS  Google Scholar 

  • Shapira M, Haber S (1990) Low reynolds number motion of a droplet in shear flow including wall effects. Int J Multiph flow 16:305–321

    CAS  Google Scholar 

  • Sharaf DM, Premlata AR, Tripathi MK, Karri B, Sahu KC (2017) Shapes and paths of an air bubble rising in quiescent liquids. Phys Fluids 29:1–17

    Google Scholar 

  • Soligo G, Roccon A, Soldati A (2019) Coalescence of surfactant-laden drops by phase field method. J Comput Phys 376:1292–1311

    Google Scholar 

  • Soligo G, Roccon A, Soldati A (2020) Deformation of clean and surfactant-laden droplets in shear flow. Meccanica 55:371–386

    Google Scholar 

  • Starkey TV (1955) The laminar flow of suspensions in tubes. Br J Appl Phys 6:34–37

    CAS  Google Scholar 

  • Sun W, Zhu C, Fu T, Yang H, Ma Y, Li H (2017) The minimum in-line coalescence height of bubbles in non-Newtonian fluid. Int J Multiph Flow 92:161–170

    CAS  Google Scholar 

  • Sun W, Zhu C, Fu T, Ma Y, Li H (2019) 3D simulation of interaction and drag coefficient of bubbles continuously rising with equilateral triangle arrangement in shear-thinning fluids. Int J Multiph Flow 110:69–81

    CAS  Google Scholar 

  • Sussman M, Fatemi E (1999) An efficient, interface-preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow. SIAM J Sci Comput 20:1165–1191

    Google Scholar 

  • Takada N, Tomiyama A, Hosokawa S (2003) Lattice Boltzmann simulation of drops in a shear flow. Fluids Eng Division Summer Meet 36975:495–500

    Google Scholar 

  • Taylor GI (1932) The viscosity of a fluid containing small drops of another fluid. Proc R Soc London Ser A Contain Pap Math Phys Character 138:41–48

    CAS  Google Scholar 

  • Taylor GI (1934) The formation of emulsions in definable fields of flow. Proc R Soc London Ser A Contain Pap a Math Phys Character 146:501–523

    CAS  Google Scholar 

  • Tiribocchi A, Montessori A, Bonaccorso F, Lauricella M, Succi S (2020) Concentrated phase emulsion with multicore morphology under shear: a numerical study. Phys Rev Fluids 5:1–11

    Google Scholar 

  • Tripathi MK, Sahu KC, Karapetsas G, Matar OK (2015) Bubble rise dynamics in a viscoplastic material. J Nonnewton Fluid Mech 222:217–226

    CAS  Google Scholar 

  • Tripathi MK, Sahu KC, Govindarajan R (2015) Dynamics of an initially spherical bubble rising in quiescent liquid. Nat Commun 6:1–9

    Google Scholar 

  • Tryggvason G, Scardovelli R, Zaleski E (2011) Direct numerical simulations of gas–liquid multiphase flows. Cambridge University Press

    Google Scholar 

  • Uhlmann M (2008) Interface-resolved direct numerical simulation of vertical particulate channel flow in the turbulent regime. Phys Fluids 20:53305

    Google Scholar 

  • Unverdi SO, Tryggvason G (1992) A front-tracking method for viscous incompressible multi-fluid flows. J comput phys 100(1):25–37

    Google Scholar 

  • Usefi E, Bayareh M (2020) Numerical simulation of the motion of a Taylor drop in a non-Newtonian fluid. SN Appl Sci 2:42452. https://doi.org/10.1007/s42452-020-2978-7

    Article  CAS  Google Scholar 

  • Van Puyvelde P, Yang H, Mewis J, Moldenaers P (2000) Breakup of filaments in blends during simple shear flow. J Rheol 44:1401–1415

    Google Scholar 

  • Vladisavljević GT, Al Nuumani R, Nabavi SA (2017) Microfluidic production of multiple emulsions. Micromachines. https://doi.org/10.3390/mi8030075

    Article  PubMed Central  Google Scholar 

  • Vu TV (2019) Parametric study of the collision modes of compound droplets in simple shear flow. Int J Heat Fluid Flow 79:108470

    Google Scholar 

  • Vu T-V, Vu TV, Bui DT (2019) Numerical study of deformation and breakup of a multi-core compound droplet in simple shear flow. Int J Heat Mass Transf 131:1083–1094

    Google Scholar 

  • Waele E (1923) Viscometry and plastometry. Oil Color Chem Assoc J 6:33

    Google Scholar 

  • Wagner AJ (2003) The origin of spurious velocities in lattice Boltzmann. Int J Modern Phys B 17:193–196

    CAS  Google Scholar 

  • Wang W, Li K, Ma M, Jin H, Angeli P, Gong J (2015) Review and perspectives of AFM application on the study of deformable drop/bubble interactions. Adv Colloid Interface Sci 225:88–97

    CAS  PubMed  Google Scholar 

  • Wang J, Xu S, Huang Y, Guan J (2018) Mechanical mechanisms of the directional shift and inverse of the eccentric compound droplet. Phys Fluids 30:42005

    Google Scholar 

  • Xu G, Wang X, Xu S, Wang J (2017) Asymmetric rheological behaviors of double-emulsion globules with asymmetric internal structures in modest extensional flows. Eng Anal Bound Elem 82:98–103

    Google Scholar 

  • Yasuda RAK, Cohen R (1981) Shear-flow properties of concentrated-solutions of linear and star branched polystyrenes. Rheol Acta 20:163

    CAS  Google Scholar 

  • Youngren GK, Acrivos A (1976) On the shape of a gas bubble in a viscous extensional flow. J Fluid Mech 76:433–442

    Google Scholar 

  • Yue P, Zhou C, Feng JJ, Ollivier-Gooch CF, Hu HH (2006) Phase-field simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing. J Comput Phys 219:47–67

    CAS  Google Scholar 

  • Zenit R, Feng JJ (2018) Hydrodynamic interactions among bubbles, drops, and particles in non-newtonian liquids. Annu Rev Fluid Mech 50:505–534

    Google Scholar 

  • Zhang C, Churazov E, Schekochihin AA (2018) Generation of internal waves by buoyant bubbles in galaxy clusters and heating of intracluster medium. Mon Not R Astron Soc 478:4785–4798

    Google Scholar 

  • Zhang J, Mercier MJ, Magnaudet J (2019) Core mechanisms of drag enhancement on bodies settling in a stratified fluid. J Fluid Mech 875:622–656

    Google Scholar 

  • Zhou LX (2009) Two-fluid models for simulating dispersed multiphase flows-a review. J Comput Multiph Flows 1(39–56):2009

    Google Scholar 

  • Zhu L, Gallaire F (2017) Bifurcation dynamics of a particle-encapsulating droplet in shear flow. Phys Rev Lett 119:1–5

    Google Scholar 

  • Day P, Manz A, and Zhang Y (2012) Microdroplet technology: principles and emerging applications in biology and chemistry. Springer Science & Business Media.

  • Elghobashi S (2009) Point-particle model for disperse turbulent flows. Int J Multiph flow 35.

  • Farhadi J, Sattari A, and Hanafizadeh P (2021) Passage of a rising bubble through a liquid-liquid interface: a flow map for different regimes. Can J Chem Eng.

  • Fox AJ, Schneider JW, and Khair AS (2021) Dynamics of a sphere in inertial shear flow between parallel walls. J Fluid Mech 915.

  • Leiva JM, Geffroy E (2018) Evolution of the size distribution of an emulsion under a simple shear flow. Fluids. https://doi.org/10.3390/fluids3030046

    Article  Google Scholar 

  • Santra S, Mandal S, and Chakraborty S (2020) Phase-field modeling of multicomponent and multiphase flows in microfluidic systems: a review. Int J Numer Methods Heat Fluid Flow.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Morteza Bayareh or Behzad Ghasemi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alinejad, Z., Bayareh, M., Ghasemi, B. et al. An overview on collision dynamics of deformable particles. Chem. Pap. 76, 6017–6031 (2022). https://doi.org/10.1007/s11696-022-02317-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-022-02317-7

Keywords

Navigation