Skip to main content

Advertisement

Log in

In situ green synthesis of cellulose nanocomposite films incorporated with silver/silver chloride particles: characterization and antibacterial performance

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Ag/AgCl@cellulose nanocomposite films were fabricated based on microwave-assisted ionic liquid method using 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) with AgNO3. The ionic liquid acted as a solvent for dissolution of cellulose and served as the chlorine source for in situ precipitation of silver chloride in the cellulose matrix. Ag/AgCl was formed within the cellulose matrix due to the partial reduction of AgCl in the cellulose matrix to Ag0 upon exposure to ambient light in the synthesis process. Optical microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, Fourier transform infrared, X-ray diffraction, X-ray photoelectron spectroscopy, and thermogravimetric analysis were used to characterize morphology, crystal structure, composition, and thermal stability of Ag/AgCl@cellulose nanocomposites. Morphological evaluation showed the cube-like Ag/AgCl particles anchored on the surface of cellulose and embedded within the interlaced cellulose matrix as well. The composite films have localized surface plasmon resonance at 480 nm, indicating formation of the silver nanoregions on the silver chloride particle surface. The antibacterial potency of the nanocomposite films was assessed against bacterial strains of E. Coli and S. Aureus. The antibacterial tests showed growth prevention of the two representative strains of Gram-positive and Gram-negative bacteria.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdelhameed RM, El-Sayed HA, El-Shahat M, El-Sayed AA, Darwesh OM (2018) Novel triazolothiadiazole and triazolothiadiazine derivatives containing pyridine moiety: design, synthesis, bactericidal and fungicidal activities. Curr Bioact Compd 14(2):169–179

    Article  CAS  Google Scholar 

  • Abdelhameed RM, Darwesh OM, Rocha J (2019) Silva AMS (2019) IRMOF-3 biological activity enhancement by post-synthetic modification. Eur J Inorg Chem 9:1243–1249

    Article  Google Scholar 

  • Abdel-Monem RA, Khalil AM, Darwesh OM, Hashim AI, Rabie ST (2020) Antibacterial properties of carboxymethyl chitosan Schiff-base nanocomposites loaded with silver nanoparticles. J Macromol Sci A Pure Appl Chem 57:145–155

    Article  CAS  Google Scholar 

  • Ahmed H, Khattab TA, Mashaly HM, El-Halwagy AA, Rehan M (2020) Plasma activation toward multi-stimuli responsive cotton fabric via in situ development of polyaniline derivatives and silver nanoparticles. Cellulose 27(5):2913–2926

    Article  CAS  Google Scholar 

  • Alahmadi NS, Betts JW, Heinze T, Kelly SM, Koschella A, Wadhawan JD (2018) Synthesis and antimicrobial effects of highly dispersed, cellulose-stabilized silver/cellulose nanocomposites. RSC Adv 8:3646–3656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alavi M, Rai M (2019) Recent progress in nanoformulations of silver nanoparticles with cellulose, chitosan, and alginic acid biopolymers for antibacterial applications. Appl Microbiol Biotechnol 103:8669–8676

    Article  CAS  PubMed  Google Scholar 

  • Atta AM (2021) Immobilization of silver and strontium oxide aluminate nanoparticles integrated into plasma-activated cotton fabric: luminescence, superhydrophobicity, and antimicrobial activity. Luminescence 36(4):1078–1088

    Article  CAS  PubMed  Google Scholar 

  • Atta AM, Abomelka HM (2021) Multifunctional finishing of cotton fibers using silver nanoparticles via microwave-assisted reduction of silver alkylcarbamate. Mater Chem Phys 260:124137

    Article  CAS  Google Scholar 

  • Bagheri M, Rabieh S (2013) Preparation and characterization of cellulose-ZnO nanocomposite based on ionic liquid ([C4mim]Cl). Cellulose 20:699–705

    Article  CAS  Google Scholar 

  • Chen H, Xiao L, Huang J (2014) Template synthesis of Ag/AgCl microrods and their efficient visible light-driven photocatalytic performance. Mater Res Bulletin 57:35–40

    Article  CAS  Google Scholar 

  • Cheng F, Betts JW, Kelly SM, Hector AL (2015) Green synthesis of highly concentrated aqueous colloidal solutions of large starch-stabilised silver nanoplatelets. Mater Sci Eng C 46:530–537

    Article  CAS  Google Scholar 

  • Choi M, Shin KH, Jang J (2010) Plasmonic photocatalytic system using silver chloride/silver nanostructures under visible light. J Colloid Interface Sci 341:83–87

    Article  CAS  PubMed  Google Scholar 

  • Dai L, Liu R, Hu LQ, S, CL, (2017) Simple and green fabrication of AgCl/Ag-cellulose paper with antibacterial and photocatalytic activity. Carbohyd Polym 174:450–455

    Article  CAS  Google Scholar 

  • Darwesh OM, Matter IA, Eida MF, Moawad H, Oh YK (2019) Influence of nitrogen source and growth phase on extracellular biosynthesis of silver nanoparticles using cultural filtrates of scenedesmus obliquus. Appl Sci 9(7):1465

    Article  CAS  Google Scholar 

  • Dong L, Liang D, Gong R (2012) In Situ photoactivated AgCl/Ag nanocomposites with enhanced visible light photocatalytic and antibacterial activity. Eur J Inorg Chem 2012:3200–3208

    Article  CAS  Google Scholar 

  • Dong YY, He J, Sun SL, Ma MG, Fu LH, Sun RC (2013) Environmentally friendly microwave ionic liquids synthesis of hybrids from cellulose and AgX (X = Cl, Br). Carbohyd Polym 98:168–173

    Article  CAS  Google Scholar 

  • Dong YY, Deng F, Zhao JJ, He J, M, MG, Xu F, Sun RC, (2014) Environmentally friendly ultrasound synthesis and antibacterial activity of cellulose/Ag/AgCl hybrids. Carbohyd Polym 99:166–172

    Article  CAS  Google Scholar 

  • El-Naggar ME, Khattab TA, Abdelrahman MS, Aldalbahi A, Hatshan MF (2021) Development of antimicrobial, UV blocked and photocatalytic self-cleanable cotton fibers decorated with silver nanoparticles using silver carbamate and plasma activation. Cellulose 28:1105–1121

    Article  CAS  Google Scholar 

  • Franz G, Blaschek W (1990) Cellulose. In Methods in plant biochemistry Carbohydrates, vol 2 (ed. PM Dey), Academic Press, London, pp 291–322

  • Gudimalla A, Jose J, Rajendran JV, Gurram G, Thomas S (2022) Synthesis of silver nanoparticles by plant extract, incorporated into alginate films and their characterizations. Chem Pap 76:1031–1043

    Article  CAS  Google Scholar 

  • Islam S, Butola BS, Gupta A, Roy A (2019) Multifunctional finishing of cellulosic fabric via facile, rapid in-situ green synthesis of AgNPs using pomegranate peel extract biomolecules. Sustain Chem Pharm 12:100135

    Article  Google Scholar 

  • Jiang J, Zhang LZ (2011) Rapid microwave-assisted nonaqueous synthesis and growth mechanism of AgCl/Ag, and its daylight-driven plasmonic photocatalysis. Chem Eur J 17:3710–3717

    Article  CAS  PubMed  Google Scholar 

  • Katouah H, El-Metwaly NM (2021) Plasma treatment toward electrically conductive and superhydrophobic cotton fibers by in situ preparation of polypyrrole and silver nanoparticles. React Funct Polym 159:104810

    Article  CAS  Google Scholar 

  • Klemm D, Heinz T, Philipp B, Wegenknecht W (1997) New approaches to advanced polymers by selective cellulose functionalization. Acta Polym 48:277–297

    Article  CAS  Google Scholar 

  • Klemm D, Philipp B, Heinz T, Wegenknecht W (1998) Comprehensive cellulose chemistry,vol 1: fundamentals and analytical methods. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Koide M, Wataoka I, Urakawa H, Kajiwara K, Henniges U, Rosenau T (2019) Intrinsic characteristics of cellulose dissolved in an ionic liquid: the shape of a single cellulose molecule in solution. Cellulose 26:2233–2242

    Article  Google Scholar 

  • Kontturi E, Tammelin T, Osterberg M (2006) Cellulose-model films and the fundamental approach. Chem Soc Rev 35:1287–1304

    Article  CAS  PubMed  Google Scholar 

  • Kucekova Z, Kasparkova V, Humpolicek P, Sevcikova P, Stejskal J (2013) Antibacterial properties of polyaniline-silver films. Chem Pap 67:1103–1108

    Article  CAS  Google Scholar 

  • Kumar VA, Nakajima Y, Uchida T, Hanajiri T, Maekawa T (2016) Synthesis of nanoparticles composed of silver and silver chloride for a plasmonic photocatalyst using an extract from needles of Pinus densiflora. Mater Lett 176:169–172

    Article  CAS  Google Scholar 

  • Kumar SSD, Rajendran NK, Houreld NN, Abrahamse H (2018) Recent advances on silver nanoparticle and biopolymer based biomaterials for wound healing applications. Int J Biol Macromol 115:165–175

    Article  CAS  PubMed  Google Scholar 

  • Lal SS, Mhaske ST (2018) AgBr and AgCl nanoparticle doped TEMPO-oxidized microfiber cellulose as a starting material for antimicrobial filter. Carbohyd Polym 191:266–279

    Article  CAS  Google Scholar 

  • Langan P, Nishiyama Y, Chanzy H (1999) A revised structure and hydrogen-bonding system in cellulose II from a neutron fiber diffraction analysis. J Am Chem Soc 121:9940–9946

    Article  CAS  Google Scholar 

  • Langan P, Sukumar N, Nishiyama Y, Chanzy H (2005) Synchrotron X-ray structures of cellulose Iβ and regenerated cellulose II at ambient temperature and 100 K. Cellulose 12:551–562

    Article  CAS  Google Scholar 

  • Liu C, Yang D, Wang Y, Shi J, Jiang Z (2012) Fabrication of antimicrobial bacterial cellulose–Ag/AgCl nanocomposite using bacteria as versatile biofactory. J Nanopart Res 14:1084–1092

    Article  Google Scholar 

  • Liu X, Chang PR, Zheng P, Anderson DP, Ma X (2015) Porous cellulose facilitated by ionic liquid [BMIM]Cl: fabrication, characterization, and modification. Cellulose 22:709–715

    Article  CAS  Google Scholar 

  • Ma Z, Yin M, Qi Z, Ren X (2018) Preparation of durable antibacterial cellulose with AgCl nanoparticles. Fiber Polym 19:2097–2102

    Article  CAS  Google Scholar 

  • Peng X, Wang S, Zhang X, Shu Y, Su S, Zhu J (2017) Ag@AgCl embedded on cellulose film: a stable, highly efficient and easily recyclable photocatalyst. Cellulose 24:4683–4689

    Article  CAS  Google Scholar 

  • Qi H (2017) Novel functional materials based on cellulose. Springer International Publishing, Verlag

    Book  Google Scholar 

  • Rehan M, Nada AM, Khatta TA, Abdelwahed NAM, El-Kheirf AAA (2020) Development of multifunctional polyacrylonitrile/silver nanocomposite films: antimicrobial activity, catalytic activity, electrical conductivity, UV protection and SERS-active sensor. J Mater Res Technol 9(4):9380–9394

    Article  CAS  Google Scholar 

  • Sarac AS (2016) Nanofibers of Conjugated Polymers. 1st edn. Jenny Stanford Publishing.

  • Sayyed AJ, Deshmukh NA, Pinjari DV (2019) A critical review of manufacturing processes used in regenerated cellulosic fibres: viscose, cellulose acetate, cuprammonium, LiCl/DMAc, ionic liquids, and NMMO based lyocell. Cellulose 26:2913–2940

    Article  CAS  Google Scholar 

  • Shu Y, Lv J, Peng X, Zhang X, Su S, Zhu J (2018) In situ controllable synthesis of Ag@AgCl in cellulose film and its effect on anti-fouling properties. Cellulose 25:5175–5184

    Article  CAS  Google Scholar 

  • Silva RD, Vongsanga K, Wang X, Byrne N (2015) Cellulose regeneration in ionic liquids: factors controlling the degree of polymerization. Cellulose 22:2845–2849

    Article  Google Scholar 

  • Song J, Roh J, Lee I, Jang J (2013) Low temperature aqueous phase synthesis of silver/silver chloride plasmonic nanoparticles as visible light photocatalysts. Dalton Trans 42:13897–13904

    Article  CAS  PubMed  Google Scholar 

  • Stejskal J, Trchová M, Kovářová J, Prokeš J, Omastová M (2008) Polyaniline-coated cellulose fibers decorated with silver nanoparticles. Chem Pap 62:181–186

    Article  CAS  Google Scholar 

  • Stevanovic T (2018) Chemistry of lignocellulosics: current trends. 1st edn. CRC Press.

  • Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975

    Article  CAS  PubMed  Google Scholar 

  • Synytsya A, Novak M (2014) Structural analysis of glucans. Ann Transl Med 2(2):17

    PubMed  PubMed Central  Google Scholar 

  • Tang L, Tang F, Li M, Li L (2018) Facile synthesis of Ag@AgCl-contained cellulose hydrogels and their application. Colloids Surf A Physicochem Eng Asp 553:618–623

    Article  CAS  Google Scholar 

  • Trinh ND, Nguyen TTB, Nguyen TH (2015) Preparation and characterization of silver chloride nanoparticles as an antibacterial agent. Adv Nat Sci Nanosci Nanotechnol 6:045011

    Article  Google Scholar 

  • Vekariya RL (2017) A review of ionic liquids: applications towards catalytic organic transformations. J Mol Liq 227:44–60

    Article  CAS  Google Scholar 

  • Verma C, Mishra A, Chauhan S, Verma P, Srivastava V, Quraish MA, Ebenso EE (2019) Dissolution of cellulose in ionic liquids and their mixed cosolvents: a review. Sustain Chem Pharm 13:100162

    Article  Google Scholar 

  • Vosmanská V, Kolářová K, Rimpelová S, Kolská Z, Švorčík V (2015) Antibacterial wound dressing: plasma treatment effect on chitosan impregnation and in situ synthesis of silver chloride on cellulose surface. RSC Adv 5:17690–17699

    Article  Google Scholar 

  • Wang S, Luo T, Zhu J, Zhang X, Su S (2016) A facile way to fabricate cellulose-Ag@AgCl composites with photocatalytic properties. Cellulose 23:3737–3745

    Article  CAS  Google Scholar 

  • Wang S, Zhang X, Luo T, Zhu J, Su S (2017) Preparation of native cellulose-AgCl fiber with antimicrobial activity through one-step electrospinning. J Biomater Sci Polym Ed 28:284–292

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Li H, Xia J, Yin S, Luo S, Liu L, Xu L (2011) One-pot synthesis of visible-light-driven plasmonic photocatalyst Ag/AgCl in ionic liquid. ACS Appl Mater Interfaces 3:22–29

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Wu J, Yu J, Zhang X, He J, Zhang J (2017) Application of ionic liquids for dissolving cellulose and fabricating cellulose-based materials: state of the art and future trends. Mater Chem Front 1:1273–1290

    Article  CAS  Google Scholar 

  • Zhang X, Shu Y, Su S, Zhu J (2018) One-step coagulation to construct durable anti-fouling and antibacterial cellulose film exploiting Ag@AgCl nanoparticle-triggered photo-catalytic degradation. Carbohyd Polym 181:499–505

    Article  CAS  Google Scholar 

  • Zhao X, Zhang J, Wang B, Zada A, Humayun M (2015) Biochemical synthesis of Ag/AgCl nanoparticles for visible-light-driven photocatalytic removal of colored dyes. Materials 8:2043–2053

    Article  CAS  PubMed Central  Google Scholar 

  • Zhou Z, Peng X, Zhong L, Wu L, Cao X, Sun RC (2016) Electrospun cellulose acetate supported Ag@AgCl composites with facet-dependent photocatalytic properties on degradation of organic dyes under visible-light irradiation. Carbohydr Polym 136:322–328

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial support from Iran National Science Foundation (INSF) (Grant Number: 92013830).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mozhgan Bagheri.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri, M., Heydari, M., Sangpour, P. et al. In situ green synthesis of cellulose nanocomposite films incorporated with silver/silver chloride particles: characterization and antibacterial performance. Chem. Pap. 76, 6223–6233 (2022). https://doi.org/10.1007/s11696-022-02311-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-022-02311-z

Keywords

Navigation