Skip to main content
Log in

Magnetically aligned graphite flakes electrodes for excellent sensitive detection of hydroquinone and catechol

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Natural graphite has a large electrical conductivity in plane direction, hundreds times of that in vertical direction. Regulating graphite flakes perpendicular to the plane will improve the performance of the sensor. As a non-connected method, magnetic field-assisted orientation can be no-additives. However, some studies believe that diamagnetic materials are non-magnetic, and must be doped by ferromagnetic materials before oriented by a magnetic field. Here, original graphite flakes were vertically oriented by a low magnetic field during the electrode preparation to increase effective surface area. The performance of electrode was enhanced in both potassium ferricyanide/potassium ferrocyanide probe system and detection of hydroquinone (HQ) and catechol (CC). For HQ and CC detection, the sensitivities of vertically oriented graphite flakes electrode are 5.05 times and 6.35 times higher than that of graphite flakes without magnetic field, respectively. This magnetic alignment technology could construct other electrode materials for electrochemical sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aragó M, Ariño C, Dago À, Díaz-Cruz JM, Esteban M (2016) Simultaneous determination of hydroquinone, catechol and resorcinol by voltammetry using graphene screen-printed electrodes and partial least squares calibration. Talanta 160:138–143

    PubMed  Google Scholar 

  • Arsalan M, Qiao X, Awais A, Wang Y, Yang S, Sheng Q, Yue T (2021) Enhanced sensitive electrochemical sensor for simultaneous catechol and hydroquinone detection by using ultrasmall ternary Pt-based nanomaterial. Electroanalysis 33:1528–1538

    CAS  Google Scholar 

  • Billaud J, Bouville F, Magrini T, Villevieille C, Studart AR (2016) Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries. Nat Energy 1:1–6

    Google Scholar 

  • Chang F, Wang H, He S, Gu Y, Zhu W, Li T, Ma R (2021) Simultaneous determination of hydroquinone and catechol by a reduced graphene oxide–polydopamine–carboxylated multi-walled carbon nanotube nanocomposite. RSC Adv 11:31950–31958

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Li Y, Wang S, Li Y, Zhou Y (2018) Highly ordered structured montmorillonite/brominated butyl rubber nanocomposites: dramatic enhancement of the gas barrier properties by an external magnetic field. J Membr Sci 546:22–30

    CAS  Google Scholar 

  • Dan X, Chunhua L, Dunpu Z, Jianbin S, Yaru N, Zhongzi X (2012) Fabrication and optical properties of self-assembled films with micro needlelike arrays under magnetic field. Mater Lett 71:94–97

    Google Scholar 

  • Dutta AK (1953) Electrical conductivity of single crystals of graphite. Phys Rev 90:187

    CAS  Google Scholar 

  • Erb RM, Libanori R, Rothfuchs N, Studart AR (2012) Composites reinforced in three dimensions by using low magnetic fields. Science 335:199–204

    CAS  PubMed  Google Scholar 

  • Fonseca R, Albers R, Leite E, Oliveira A (2020) Parallel magnetic anisotropy in few layers MoS2 films. J Magn Magn Mater 497:165985

    Google Scholar 

  • Goetz A, Focke AB, Faessler A (1932) The production of large artificial graphite crystals. Phys Rev 39:168

    CAS  Google Scholar 

  • Gong C, Zhang X (2019) Two-dimensional magnetic crystals and emergent heterostructure devices. Science 363:eaav4450

    CAS  PubMed  Google Scholar 

  • Hasanpour F, Nekoeinia M, Semnani A, Shirazinia R (2019) Synthesis of semicarbazide catechol derivative as a potential electrode modifier: application in electrocatalysis of catechol amine drugs. Chem Pap 73:2081–2089

    CAS  Google Scholar 

  • Hu C, Huang H, Sun H, Yan Y, Xu F, Liao J (2022) Simultaneous analysis of catechol and hydroquinone by polymelamine/CNT with dual-template molecular imprinting technology. Polymer 242:124593

    CAS  Google Scholar 

  • Krishnan K (1934) Magnetic anisotropy of graphite. Nature 133:174–175

    CAS  Google Scholar 

  • Krishnan K, Ganguli N (1939) Large anisotropy of the electrical conductivity of graphite. Nature 144:667–667

    CAS  Google Scholar 

  • Kuskur CM, Kumara Swamy BE, Jayadevappa H (2019) Poly (Evans blue) sensor for catechol and hydroquinone: a voltammetric study. J Electroanal Chem 833:512–519

    CAS  Google Scholar 

  • Li X, Lin D, Lu K, Chen X, Yin S, Li Y, Zhang Z, Tang M, Chen G (2020) Graphene oxide orientated by a magnetic field and application in sensitive detection of chemical oxygen demand. Anal Chim Acta 1122:31–38

    CAS  PubMed  Google Scholar 

  • Lin D, Lasia A (2017) Electrochemical impedance study of the kinetics of hydrogen evolution at a rough palladium electrode in acidic solution. J Electroanal Chem 785:190–195

    CAS  Google Scholar 

  • Lin C-H, Sheu J-Y, Wu H-L, Huang Y-L (2005) Determination of hydroquinone in cosmetic emulsion using microdialysis sampling coupled with high-performance liquid chromatography. J Pharm Biomed Anal 38:414–419

    CAS  PubMed  Google Scholar 

  • Lin D, Tang T, Jed Harrison D, Lee WE, Jemere AB (2015) A regenerating ultrasensitive electrochemical impedance immunosensor for the detection of adenovirus. Biosens Bioelectron 68:129–134

    CAS  PubMed  Google Scholar 

  • Lin F, Zhu Z, Zhou X, Qiu W, Niu C, Hu J, Dahal K, Wang Y, Zhao Z, Ren Z, Litvinov D, Liu Z, Wang ZM, Bao J (2017) Orientation control of graphene flakes by magnetic field: broad device applications of macroscopically aligned graphene. Adv Mater 29:1604453

    Google Scholar 

  • Lin D, Harris KD, Chan NWC, Jemere AB (2018) Nanostructured indium tin oxide electrodes immobilized with toll-like receptor proteins for label-free electrochemical detection of pathogen markers. Sens Actuators B Chem 257:324–330

    CAS  Google Scholar 

  • Lin D, Pillai RG, Lee WE, Jemere AB (2019) An impedimetric biosensor for E. coli O157: H7 based on the use of self-assembled gold nanoparticles and protein G. Microchim Acta. https://doi.org/10.1007/s00604-019-3282-3

    Article  CAS  Google Scholar 

  • Lu KC, Wang JK, Lin DH, Chen X, Yin SY, Chen GS (2020) Construction of a novel electrochemical biosensor based on a mesoporous silica/oriented graphene oxide planar electrode for detecting hydrogen peroxide. Anal Methods 12:2661–2667

    CAS  PubMed  Google Scholar 

  • Lu Z, Wang Y, Hasebe Y, Zhang Z (2021) Electrochemical sensing platform based on lotus stem-derived porous carbon for the simultaneous determination of hydroquinone, catechol and nitrite. Electroanalysis 33:956–963

    CAS  Google Scholar 

  • Mohamed HM (2016) Screen-printed disposable electrodes: pharmaceutical applications and recent developments. TrAC, Trends Anal Chem 82:1–11

    CAS  Google Scholar 

  • Moldoveanu SC, Kiser M (2007) Gas chromatography/mass spectrometry versus liquid chromatography/fluorescence detection in the analysis of phenols in mainstream cigarette smoke. J Chromatogr A 1141:90–97

    CAS  PubMed  Google Scholar 

  • Nagarajan S, Vairamuthu R, Angamuthu R, Venkatachalam G (2019) Electrochemical fabrication of reusable pencil graphite electrodes for highly sensitive, selective and simultaneous determination of hydroquinone and catechol. J Electroanal Chem 846:113156

    CAS  Google Scholar 

  • Natarajan A, Mohankumar N (1997) An algorithm for the numerical evaluation of the Randles-Sevcik function. Comput Chem 21:315–318

    CAS  Google Scholar 

  • Nguyen J, Conca DV, Stein J, Bovo L, Howard CA, Garcia IL (2019) Magnetic control of graphitic microparticles in aqueous solutions. Proc Natl Acad Sci 116:2425–2434

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nkosi D, Pillay J, Ozoemena KI, Nouneh K, Oyama M (2010) Heterogeneous electron transfer kinetics and electrocatalytic behaviour of mixed self-assembled ferrocenes and SWCNT layers. Phys Chem Chem Phys 12:604–613

    CAS  PubMed  Google Scholar 

  • Popova AN (2017) Crystallographic analysis of graphite by X-ray diffraction. Coke Chem 60:361–365

    Google Scholar 

  • Primak W, Fuchs L (1954) Electrical conductivities of natural graphite crystals. Phys Rev 95:22

    Google Scholar 

  • Renedo OD, Alonso-Lomillo M, Martinez MA (2007) Recent developments in the field of screen-printed electrodes and their related applications. Talanta 73:202–219

    CAS  PubMed  Google Scholar 

  • Rikken RS, Nolte RJ, Maan JC, van Hest JC, Wilson DA, Christianen PC (2014) Manipulation of micro-and nanostructure motion with magnetic fields. Soft Matter 10:1295–1308

    CAS  PubMed  Google Scholar 

  • Semenenko B, Esquinazi PD (2018) Diamagnetism of bulk graphite revised. Magnetochemistry 4:52

    CAS  Google Scholar 

  • Silva LAJ, Stefano JS, Cardoso RM, Prado NS, Soares PHT, Nossol E, Munoz RAA, Angnes L, Richter EM (2019) Evaluation of graphite sheets for production of high-quality disposable sensors. J Electroanal Chem 833:560–567

    CAS  Google Scholar 

  • Smarzewska S, Miękoś E, Guziejewski D, Zieliński M, Burnat B (2018) Graphene oxide activation with a constant magnetic field. Anal Chim Acta 1011:35–39

    CAS  PubMed  Google Scholar 

  • Song Y, Zhao M, Wang X, Qu H, Liu Y, Chen S (2019) Simultaneous electrochemical determination of catechol and hydroquinone in seawater using Co3O4/MWCNTs/GCE. Mater Chem Phys 234:217–223

    CAS  Google Scholar 

  • Topping DC, Bernard LG, O’Donoghue JL, English JC (2007) Hydroquinone: acute and subchronic toxicity studies with emphasis on neurobehavioral and nephrotoxic effects. Food Chem Toxicol 45:70–78

    CAS  PubMed  Google Scholar 

  • Vauzour D, Rodriguez-Mateos A, Corona G, Oruna-Concha MJ, Spencer JP (2010) Polyphenols and human health: prevention of disease and mechanisms of action. Nutrients 2:1106–1131

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walters D, Casavant M, Qin X, Huffman C, Boul P, Ericson L, Haroz E, O’connell M, Smith K, Colbert D (2001) In-plane-aligned membranes of carbon nanotubes. Chem Phys Lett 338:14–20

    CAS  Google Scholar 

  • Wang T, Gao Y, Tang T, Bian H, Zhang Z, Xu J, Xiao H, Chu X (2019a) Preparation of ordered TiO2 nanofibers/nanotubes by magnetic field assisted electrospinning and the study of their photocatalytic properties. Ceram Int 45:14404–14410

    CAS  Google Scholar 

  • Wang Y, Chen L, Liu H, Xiong Z, Zhao L, Liu S, Huang C, Zhao Y (2019b) Cornlike ordered N-doped carbon coated hollow Fe3O4 by magnetic self-assembly for the application of Li-ion battery. Chem Eng J 356:746–755

    Google Scholar 

  • Wu T, Zhu Y, Song L, Chen Y, Huang Y, Tang J, Ma X, Wang H, Zhang J, Lin D, Chen G (2022) Three-dimensional gold nanowires with high specific surface area for simultaneous detection of heavy metal ions. Anal Methods 14:859–868

    CAS  PubMed  Google Scholar 

  • Yin S, Wang J, Li Y, Wu T, Song L, Zhu Y, Chen Y, Cheng K, Zhang J, Ma X, Donghai L, Chen G (2021) Macroscopically oriented magnetic core-regularized nanomaterials for glucose biosensors assisted by self-sacrificial label. Electroanalysis 33:2216–2225

    CAS  Google Scholar 

  • Yu X, Yu J, Fautrelle Y, Gagnoud A, Ren Z, Lu X, Li X (2019) Strong magnetic field-dual-assisted fabrication of heterogeneous sulfide-based hollow nanochain electrodes for high-rate supercapacitors. J Mater Chem A 7:19733–19744

    CAS  Google Scholar 

  • Zaric S, Ostojic GN, Kono J, Shaver J, Moore VC, Strano MS, Hauge RH, Smalley RE, Wei X (2004) Optical signatures of the Aharonov-Bohm phase in single-walled carbon nanotubes. Science 304:1129–1131

    CAS  PubMed  Google Scholar 

  • Zhang L, Zeng M, Wu D, Yan X (2019) Magnetic field regulating the graphite electrode for excellent lithium-ion batteries performance. ACS Sustain Chem Eng 7:6152–6160

    CAS  Google Scholar 

Download references

Funding

This work is supported by the Program for Professor of Special Appointment (Eastern Scholar) at SIHL, the Sailing Project from Science and Technology Commission of Shanghai Municipality (17YF1406600), the Chenguang project supported by Shanghai Municipal Education Commission (18CG68) and Gaoyuan Discipline of Shanghai-Materials Science and Engineering.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Donghai Lin or Guosong Chen.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 952 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wu, T., Song, L. et al. Magnetically aligned graphite flakes electrodes for excellent sensitive detection of hydroquinone and catechol. Chem. Pap. 76, 6323–6333 (2022). https://doi.org/10.1007/s11696-022-02248-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-022-02248-3

Keywords

Navigation