Skip to main content
Log in

Inertial separation of microparticles suspended in shear-thinning fluids

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

This study aims to investigate the inertial separation of microparticles suspended in a non-Newtonian Carreau fluid using a single-loop microdevice. Numerical simulations are performed for focusing of polystyrene microparticles with diameters of 5, 15, and 25 μm, power-law index n = 0.7 and n = 0.9, as well as relaxation time constant λ = 0.7, λ = 0.07, and λ = 0.007 s. The impact of these parameters on the trajectory of particles and particle separation rate is investigated. The results demonstrate that, compared with the Newtonian case, the shear-thinning effect leads to the center of the Dean vertices deviating from the symmetrical state and moving toward the outer wall of the microchannel. It can be concluded that the separation efficiency decreases by reducing the power-law index and relaxation time constant. It is revealed that the separation efficiency of 25-, 15-, and 5-μm particles is 100% when n = 0.7 and λ = 0.007 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Banerjee I, Rosti ME, Kumar T, Brandt L, Russom A (2021) Analogue tuning of particle focusing in elasto-inertial flow. Meccanica 56:1–11

    Article  Google Scholar 

  • Bayareh M (2020) An updated review on particle separation in passive microfluidic devices. Chem Eng Process-Process Intensif 153:107984

    Article  CAS  Google Scholar 

  • Berger S, Talbot L, Yao L (1983) Flow in curved pipes. Annu Rev Fluid Mech 15(1):461–512

    Article  Google Scholar 

  • Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I (2008) Continuous particle separation in spiral microchannels using dean flows and differential migration. Lab Chip 8(11):1906–1914

    Article  CAS  PubMed  Google Scholar 

  • Chung AJ (2019) A minireview on inertial microfluidics fundamentals: inertial particle focusing and secondary flow. BioChip J 13(1):53–63

    Article  CAS  Google Scholar 

  • D’Avino G, Hulsen MA, Maffettone PL (2015) Separation of particles in non-Newtonian fluids flowing in t-shaped microchannels. Adv Model Simul Eng Sci 2(1):1–23

    Article  Google Scholar 

  • Fellouah H, Castelain C, Ould El Moctar A, Peerhossaini H (2006) A numerical study of dean instability in non-newtonian fluids. J Fluids Eng 128(1):34–41

    Article  Google Scholar 

  • Gijs MA, Lacharme F, Lehmann U (2010) Microfluidic applications of magnetic particles for biological analysis and catalysis. Chem Rev 110(3):1518–1563

    Article  CAS  PubMed  Google Scholar 

  • Gossett DR et al (2012) Inertial manipulation and transfer of microparticles across laminar fluid streams. Small 8(17):2757–2764

    Article  CAS  PubMed  Google Scholar 

  • Hou HW et al (2013) Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci Rep 3(1):1–8

    Article  Google Scholar 

  • Kim J-A, Lee J-R, Je T-J, Jeon E-C, Lee W (2018) Size-dependent inertial focusing position shift and particle separations in triangular microchannels. Anal Chem 90(3):1827–1835

    Article  CAS  PubMed  Google Scholar 

  • Kim MJ, Lee DJ, Youn JR, Song YS (2016) Two step label free particle separation in a microfluidic system using elasto-inertial focusing and magnetophoresis. RSC Adv 6(38):32090–32097

    Article  CAS  Google Scholar 

  • Kumar T, Ramachandraiah H, Iyengar SN, Banerjee I, Mårtensson G, Russom A (2021) High throughput viscoelastic particle focusing and separation in spiral microchannels. Sci Rep 11(1):1–13

    Article  Google Scholar 

  • Kwon J-Y, Kim T, Kim J, Cho Y (2020) Particle focusing under Newtonian and viscoelastic flow in a straight rhombic microchannel. Micromachines 11(11):998

    Article  PubMed Central  Google Scholar 

  • Li M et al (2016) Inertial focusing of ellipsoidal Euglena gracilis cells in a stepped microchannel. Lab Chip 16(22):4458–4465

    Article  CAS  PubMed  Google Scholar 

  • Martel JM, Toner M (2013) Particle focusing in curved microfluidic channels. Sci Rep 3(1):1–8

    Article  Google Scholar 

  • Masaeli M et al (2012) Continuous inertial focusing and separation of particles by shape. Phys Rev X 2(3):031017

    Google Scholar 

  • Mohammadi Masiri S, Bayareh M, Ahmadi Nadooshan A (2019) Pairwise interaction of drops in shear-thinning inelastic fluids. Korea-Australia Rheol J 31:25–34

    Article  Google Scholar 

  • Mutlu BR, Edd JF, Toner M (2018) Oscillatory inertial focusing in infinite microchannels. Proc Natl Acad Sci 115(30):7682–7687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nam J, Lim H, Kim D, Jung H, Shin S (2012) Continuous separation of microparticles in a microfluidic channel via the elasto-inertial effect of non-Newtonian fluid. Lab Chip 12(7):1347–1354

    Article  CAS  PubMed  Google Scholar 

  • Nikdoost A, Rezai P (2020) Dean flow velocity of viscoelastic fluids in curved microchannels. AIP Adv 10(8):085015

    Article  CAS  Google Scholar 

  • Nivedita N, Ligrani P, Papautsky I (2017) Dean flow dynamics in low-aspect ratio spiral microchannels. Sci Rep 7(1):1–10

    Article  Google Scholar 

  • Ozbey A et al (2019) Inertial focusing of cancer cell lines in curvilinear microchannels. Micro Nano Eng 2:53–63

    Article  Google Scholar 

  • Pandey CM et al (2018) Microfluidics based point-of-care diagnostics. Biotechnol J 13(1):1700047

    Article  Google Scholar 

  • Shiriny A, Bayareh M (2020) On magnetophoretic separation of blood cells using Halbach array of magnets. Meccanica 55:1–14

    Article  Google Scholar 

  • Shiriny A, Bayareh M (2020) Inertial focusing of CTCs in a novel spiral microchannel. Chem Eng Sci 229:116102

    Article  Google Scholar 

  • Ying Y, Lin Y (2019) Inertial focusing and separation of particles in similar curved channels. Sci Rep 9(1):1–12

    Article  Google Scholar 

  • Yoon K, Jung HW, Chun M-S (2017) Secondary flow behavior of electrolytic viscous fluids with Bird-Carreau model in curved microchannels. Rheol Acta 56(11):915–926

    Article  CAS  Google Scholar 

  • Zhou Y, Ma Z, Ai Y (2018) Sheathless inertial cell focusing and sorting with serial reverse wavy channel structures. Microsyst Nanoeng 4(1):1–14

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Bayareh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiriny, A., Bayareh, M. & Usefian, A. Inertial separation of microparticles suspended in shear-thinning fluids. Chem. Pap. 76, 4341–4350 (2022). https://doi.org/10.1007/s11696-022-02184-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-022-02184-2

Keywords

Navigation