Skip to main content
Log in

Determination of metals in artistic pigments using the optimized GFAAS method and Raman spectroscopy

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Graphite furnace atomic absorption spectroscopy (GFAAS) was applied to identification of historical pigments. The method is adapted to determine different metals, usually found in pigments. Operating conditions were optimized, such as sample drying step, pyrolysis and atomization temperatures, modifiers, and volume of sample introduced into the atomizer, to reduce interferences due to a complex sample matrix. Using the optimized method pigments in samples from the painting Coronation of the Virgin from the Church of the Shroud of the Holy Virgin in Barič were identified. The samples were analyzed also by Raman microscopy to verify the identification achieved by GFAAS. Raman microscopy confirmed the assumptions made based on GFAAS results. Using the two techniques a variety of pigments have been identified, such as calcite, lead white, goethite, hematite, ultramarine, vermilion, minium, carbon black. Based on GFAAS results the presence of azurite was observed in the blue paint sample, although this finding was not confirmed by Raman microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agnoli F, Calliari I, Mazzocchin G-A (2007) Use of different spectroscopic techniques in the analysis of roman age wall paintings. Ann Chim 97(1–2):1–7

    Article  CAS  PubMed  Google Scholar 

  • Aliatis I, Bersani D, Campani E, Casoli A, Lottici PP, Mantovan S, Marino I-G, Ospitali F (2009) Green pigments of the pompeian artists’ palette. Spectrochim Acta A Mol Biomol Spectrosc 73(3):532–538

    Article  PubMed  CAS  Google Scholar 

  • Ávila AK, Araujo TO, Couto PRG, Borges RMH (2005) Experimental design applied to the optimization of pyrolysis and atomization temperatures for As measurement in water samples by GFAAS. Metrologia 42(5):368

    Article  CAS  Google Scholar 

  • Bader N (2011) Sample preparation for flame atomic absorption spectroscopy: an overview. Rasayan J Chem 4(1):49–55

    CAS  Google Scholar 

  • Barcelo D (2000) Sample handling and trace analysis of pollutants: techniques, applications and quality assurance, 1st edn. Elsevier Science, Amsterdam

    Google Scholar 

  • Belarra MA, Crespo C, Martinez-Garbayo MP, Castillo JR (1997) Direct determination of metals in solid samples by graphite-furnace atomic absorption spectrometry: does sample mass influence the analytical results? Spectrochim Acta Part B Spectrosc 52(12):1855–1860

    Article  Google Scholar 

  • Bentlin F, Pozebon D, Mello P, Flores E (2007) Determination of trace elements in paints by direct sampling graphite furnace atomic absorption spectrometry. Anal Chim Acta 602(1):23–31

    Article  CAS  PubMed  Google Scholar 

  • Bicchieri M, Monti M, Piantanida G, Sodo A, Tanasi MT (2008) Inside the parchment. Presented at 9th international conference on NDT of art, Jerusalem Israel

  • Bouchard M, Smith DC (2003) Catalogue of 45 reference Raman spectra of minerals concerning research in art history or archaeology, especially on corroded metals and coloured glass. Spectrochim Acta A Mol Biomol Spectrosc 59:2247–2266

    Article  CAS  PubMed  Google Scholar 

  • Burgio L, Melessanaki K, Doulgeridis M, Clark RJH, Anglos D (2001) Pigment identification in paintings employing laser induced breakdown spectroscopy and Raman microscopy. Spectrochim Acta Part B Spectrosc 56(6):905–913

    Article  Google Scholar 

  • Burgio L, Clark RJH, Muralha VSF, Stanley T (2008) Pigment analysis by Raman microscopy of the non-figurative illumination in 16th-to 18th-century Islamic manuscripts. J Raman Spectrosc 39:1482–1493

    Article  CAS  Google Scholar 

  • Bussotti L, Carboncini MP, Castellucci E, Giuntini L, Mando PA (1997) Identification of pigments in a fourteenth-century miniature by combined micro-Raman and PIXE spectroscopic techniques. Stud Conserv 42(2):83–92

    CAS  Google Scholar 

  • Castro K, Rodríguez-Laso MD, Fernández LA, Madariaga JM (2002) Fourier transform Raman spectroscopic study of pigments present in decorative wallpapers of the middle nineteenth century from the Santa Isabel factory (Vitoria, Basque Country, Spain). J Raman Spectrosc 33:17–25

    Article  CAS  Google Scholar 

  • Christie RM (2001) Colour chemistry. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Clark RJH (1964) The application of diffuse reflectance spectroscopy to inorganic chemistry. J Chem Educ 41(9):488

    Article  CAS  Google Scholar 

  • Clark M (2001) The art of all colours: medieval recipe books for painters and illuminators. Archetype, London

    Google Scholar 

  • Clark RJH (2002) Pigment identification by spectroscopic means: an arts/science interface. C R Chimie 5(1):7–20

    Article  CAS  Google Scholar 

  • Cosano D, Esquivel D, Costa CM, Jiménez-Sanchidrián C, Ruiz JR (2019) Identification of pigments in the annunciation sculptural group (Cordoba, Spain) by micro-Raman spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 214:139–145

    Article  CAS  PubMed  Google Scholar 

  • de Faria DLA, Lopes FN (2007) Heated goethite and natural hematite: can Raman spectroscopy be used to differentiate them? Vib Spectrosc 45:117–121

    Article  CAS  Google Scholar 

  • de Faria DLA, Venâncio Silva S, de Oliveira MT (1997) Raman microspectroscopy of some iron oxides and oxyhydroxides. J Raman Spectrosc 28:873–878

    Article  Google Scholar 

  • Doménech-Carbó MT, Osete-Cortina L (2016) Another beauty of analytical chemistry: chemical analysis of inorganic pigments of art and archaeological objects. Chem Texts 2:14

    Google Scholar 

  • Dong HM, Krivan V (2001) Direct solid-sampling electrothermal atomic absorption spectrometry methods for the determination of silicon in oxides of niobium, titanium and zirconium. Spectrochim Acta Part B Spectrosc 56(9):1645–1656

    Article  Google Scholar 

  • Egel E, Simon S (2013) Investigation of the painting materials in Zhongshan Grottoes (Shaanxi, China). Herit Sci 1:29

    Article  CAS  Google Scholar 

  • Feisner EA, Reed R (2014) Color studies. Fairchild Books, New York

    Book  Google Scholar 

  • Fisher AS, Goodall PS, Hindsc MWD, Penny M (2005) The sensitivity of XRF is improved by total reflectance XRF (TRXRF) instrument setup. J Anal Spectrom 20:1398–1424

    Article  CAS  Google Scholar 

  • Froment F, Tournié A, Colomban P (2008) Raman identification of natural red to yellow pigments: ochre and iron-containing ores. J Raman Spectrosc 39:560–568

    Article  CAS  Google Scholar 

  • Gettens RJ, Stout GL (1966) Painting materials: a short Encyclopedia. Dover Publications, New York

    Google Scholar 

  • Gettens RJ, Kühn H, Chase WT, Kuhn H (1967) Identification of the materials of paintings. 3. Lead White Stud Conserv 12:125–139

    CAS  Google Scholar 

  • Goffer Z (2007) Archaeological chemistry, 2nd edn. Wiley, Hoboken

    Book  Google Scholar 

  • Goltz DM, Coombs J, Marion C, Cloutis E, Gibson J, Attas M, Choo-Smith L-P, Collins C (2004) Pigment identification in artwork using graphite furnace atomic absorption spectrometry. Talanta 63:609–616

    Article  CAS  PubMed  Google Scholar 

  • Goltz DM, Charleton K, Cloutis E, Grinberg P, Collins C (2007) Identification of darkened pigments in cultural objects by graphite furnace atomic absorption spectroscopy and inductively coupled plasma-mass spectrometry. J Anal Spectrom 22:140–146

    Article  CAS  Google Scholar 

  • Haswell R, Zeile U, Mensch K (2008) Van Gogh’s painting grounds: an examination of barium sulphate extender using analytical electron microscopy—SEM/FIB/TEM/EDX. Microchim Acta 161:363–369

    Article  CAS  Google Scholar 

  • Hernanz A, Gavira-Vallejo JM, Ruiz-López JF, Martin S, Maroto-Valiente Á, Balbín-Behrmann R, Menéndez M, Alcolea-González JJ (2012) Spectroscopy of palaeolithic rock paintings from the Tito Bustillo and El Buxu Caves, Asturias, Spain. J Raman Spectrosc 43:1644–1650

    Article  CAS  Google Scholar 

  • Janssens K (2005) A survey of the recent use of X-ray beam methods for non-destructive investigations in the cultural heritage sector. In: Van Grieken R, Janssens K (eds) Cultural heritage conservation and environment impact assessment by non-destructive testing and micro-analysis. CRC Press, London

    Google Scholar 

  • Keune K, Boon JJ (2005) Analytical imaging studies clarifying the process of the darkening of vermilion in paintings. Anal Chem 77:4742–4750

    Article  CAS  PubMed  Google Scholar 

  • Kleist E, Korter T (2019) Quantitative analysis of minium and vermilion mixtures using low-frequency vibrational spectroscopy. Anal Chem 92:1211–1218

    Article  PubMed  CAS  Google Scholar 

  • Klockenämper R, von Bohlena A, Moens L, Devos W (1993) Analytical characterization of artists’ pigments used in old and modern paintings by total-reflection X-ray fluorescence. Spectrochim Acta Part B Spectrosc 48(2):239–246

    Article  Google Scholar 

  • Kostadinovska M, Jakovleska-Spirovska Z, Minčeva-Šukarova B (2013) A spectroscopic study of inks from a rare Old Slavic manuscript: liturgical collection of chronicles, scriptures, etc. In: 2nd virtual international conference on advanced research in scientific areas, Slovakia

  • Mazzocchin GA, Orsega EF, Baraldi P, Zannini P (2006) Aragonite in Roman wall paintings of the VIIIa Regio, Aemilia, and Xa Regio. Venetia Histria Ann Chim 96(7–8):377–387

    Article  CAS  PubMed  Google Scholar 

  • Mazzocchin GA, Rudello D, Maraković N, Marić I (2007) Analysis of mural paintings in Istria. Ann Chim 97(8):655–663

    Article  CAS  PubMed  Google Scholar 

  • Melessanaki K, Papadakis V, Balas C, Anglos D (2001) Laser induced breakdown spectroscopy and hyper-spectral imaging analysis of pigments on an illuminated manuscript. Spectrochim Acta Part B Spectrosc 56:2337–2346

    Article  Google Scholar 

  • Miguel C, Claro A, Goncalves AP, Muralha VSF, Melo MJ (2009) A study on read lead degradation in a medieval manuscript Lorvão Apocalypse (1189). J Raman Spectrosc 40:1966–1973

    Article  CAS  Google Scholar 

  • Miguel C, Pinto JV, Clarke M, Melo MJ (2014) The alchemy of red mercury sulphide: the production of vermilion for medieval art. Dyes Pigm 102:210–217

    Article  CAS  Google Scholar 

  • Moens L, Devos W, Klockenkämper R, von Bohlen A (1994) Total reflection X-ray fluorescence in the ultramicro analysis of artists’ pigments. Trends Anal Chem 13(5):198–205

    Article  CAS  Google Scholar 

  • Moussa AMA, Kantiranis N, Voudouris KS, Stratis JA, Ali MF, Christaras V (2009) The impact of soluble salts on the deterioration of pharaonic and coptic wall paintings at al Qurna, Egypt: mineralogy and chemistry. Archaeometry 51(2):292–308

    Article  CAS  Google Scholar 

  • Osticioli I, Mendes NFC, Nevin A, Gil FPSC, Becucci M, Castellucci E (2009) Analysis of natural and artificial ultramarine blue pigments using laser induced breakdown and pulsed Raman spectroscopy, statistical analysis and light microscopy. Spectrochim Acta A Mol Biomol Spectrosc 73:525–531

    Article  CAS  PubMed  Google Scholar 

  • Popović B, Prodanović-Ranković I (2005) Ikone oltarske pregrade dvorske kapele u crkvi Pokrova Presvete Bogrodice u Bariču, RIPCM, Belgrade

  • Rampazzi L, Campo L, Cariati F, Tanda G, Colombini MP (2007) Prehistoric wall paintings: the case of the domus de janas necropolis (Sardinia, Italy). Archaeometry 49(3):559–569

    Article  CAS  Google Scholar 

  • Resano M, Garcia-Ruiz E, Vanhaecke F, Crespo C, Belarra MA (2004) Evaluation of solid sampling-electrothermal vaporization-inductively coupled plasma mass spectrometry and solid sampling-graphite furnace atomic absorption spectrometry for the direct determination of Cr in various materials using solution-based calibration approaches. J Anal Spectrom 19:958–965

    Article  CAS  Google Scholar 

  • Scheuerman W, Ritter GJ (1969) Raman spectra of cinnabar (HgS), realgar (As4S4) and orpiment (As2S3). Z Naturforsch A 24:408–411

    Article  Google Scholar 

  • Schumann W (2013) Gemstones of the world: newly revised, 5th edn. Sterling, New York

    Google Scholar 

  • Shrivastava A, Gupta VB (2011) Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron Young Sci 2:21–25

    Article  Google Scholar 

  • Tomasini EP, Marte F, Careaga VP, Landa CR, Siracusano G, Maier MS (2016) Virtuous colours for mary identification of lapis lazuli, smalt and cochineal in the andean colonial image of our lady of Copacabana (Bolivia). Philos Trans A Math Phys Eng Sci 374:2082

    Google Scholar 

  • Vale MGR, Oleszczuk N, dos Santos WNL (2006) Current status of direct solid sampling for electrothermal atomic absorption spectrometry—a critical review of the development between 1995 and 2005. Appl Spectrosc Rev 41(4):377–400

    Article  CAS  Google Scholar 

  • Wainwright NM, Moffatt EA, Sirois PJ (2009) Occurrences of green earth pigment on Northwest Coast First Nations painted objects. Archaeometry 51(3):440–456

    Article  CAS  Google Scholar 

  • Wang Z, Wang S, Cai M (2007) Determination of cadmium in paint samples by graphite furnace atomic absorption spectrometry with optical temperature control. Talanta 72:1723–1727

    Article  CAS  PubMed  Google Scholar 

  • Wehling B, Vandenabeele P, Moens L, Klockenkämper R, von Bohlen A, Van Hooydonk G, de Reu M (1999) Investigation of pigments in medieval manuscripts by micro Raman spectroscopy and total reflection X-ray fluorescence spectrometry. Mikrochim Acta 130:253–260

    Article  CAS  Google Scholar 

  • West Fitzhugh E (1986) Red lead and minium in artists’ pigments: a handbook of their history and characteristics, ed. Feller RLF, National Gallery of Art, Washington, ch.6

  • Zorba T, Andrikopoulos KS, Paraskevopoulos KM, Pavlidou E, Popkonstantinov K, Kostova R, Platnyov V, Daniilia S (2007) Infrared and Raman vibrational spectroscopies reveal the palette of frescos found in the medieval monastery of Karaach Teke. Ann Chim 97:491–503

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatjana Tripković.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2130 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripković, T., Vasić, R., Lolić, A. et al. Determination of metals in artistic pigments using the optimized GFAAS method and Raman spectroscopy. Chem. Pap. 76, 3607–3618 (2022). https://doi.org/10.1007/s11696-022-02110-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-022-02110-6

Keywords

Navigation