Skip to main content

α-Glucosidase and α-amylase inhibitory potential of main compounds and drug candidates from Elaeagnus rhamnoides (L.) A. Nelson

Abstract

Elaeagnus rhamnoides (L.) A. Nelson (synonym: Hippophae rhamnoides) (Elaeagnaceae) is an important plant with multiple usages. The current study was laid on discovering the phytochemical profiling of E. rhamnoides leaves through antihyperglycemic and antioxidant effects. The ethyl acetate (IC50 = 46.89 ± 2.18 µg/mL) and n-butanol extracts (IC50 = 51.33 ± 2.53 µg/mL) possessed potent inhibitory activity against α-glucosidase enzyme as compared with standard compound, acarbose (IC50 = 4212.62 ± 130.00 µg/mL). Seven compounds were isolated, and their structure was determined by 1D- and 2D-NMR. Isorhamnetin-3-O-β-d-glucopyranosyl-7-O-α-l-rhamnopyranoside (1), isorhamnetin-7-O-α-l-rhamnopyranoside (2), isoquercitrin (3), narcissin (4), isorhamnetin-3-O-β-d-glucopyranoside (5), arjunglucoside I (6), and casuarinin (7) were isolated from n-butanol extract. All isolated compounds, especially arjunglucoside I (IC50 = 1074 ± 32 µM) and casuarinin (IC50 = 21 ± 2 µM), showed higher α-glucosidase inhibitory activity than acarbose (IC50 = 6561 ± 207 µM). Casuarinin displayed powerful scavenging activity against to both ABTS radical with 2 ± 1 µM IC50 value and DPPH radical with 14 ± 1 µM IC50 value while IC50 values of trolox and α-tocopherol were 31 ± 1 and 50 ± 1 µM against ABTS radical, and 67 ± 2 and 95 ± 3 µM against DPPH radical, respectively. Arjunglucoside I was isolated for first time from this species and Elaeagnaceae family. Preparations prepared from E. rhamnoides leaf extracts standardized via casuarinin and arjunglucoside I could be potential phytotherapeutics for diabetes mellitus.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Al-Azzawie HF, Alhamdani MS (2006) Hypoglycemic and antioxidant effect of oleuropein in alloxan-diabetic rabbits. Life Sci 78:1371–1377. https://doi.org/10.1016/j.lfs.2005.07.029

    CAS  Article  PubMed  Google Scholar 

  2. Bachhawat JA, Shihabudeen MS, Thirumurugan K (2011) Screening of fifteen Indian ayurvedic plants for alpha-glucosidase inhibitory activity and enzyme kinetics. Int J Pharm Pharm Sci 3:267–274

    Google Scholar 

  3. Baytop T (1999) Türkiye’de Bitkiler ile Tedavi- Geçişte ve Bugün. Istanbul, Turkey

  4. Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 181:1199–1200. https://doi.org/10.1038/1811199a0

    CAS  Article  Google Scholar 

  5. De Rodríguez DJ, García-Hernández LC, Rocha-Guzmán NE, Moreno-Jiménez MR, Rodríguez-García R, Díaz-Jiménez MLV, Flores-López ML, Villarreal-Quintanilla JA, Peña-Ramosa FM, Carrillo-Lomelí DA (2017) Hypoglycemic and anti-inflammatory effects of Psacalium paucicapitatum corms infusions. Ind Crops Prod 107:482–488. https://doi.org/10.1016/j.indcrop.2017.04.022

    CAS  Article  Google Scholar 

  6. Fred-Jaiyesimi A, Kio A, Richard W (2009) α-Amylase inhibitory effect of 3β-olean-12-en-3-yl(9Z)-hexadec-9-enoate isolated from Spondias mombin leaf. Food Chem 116:285–288. https://doi.org/10.1016/j.foodchem.2009.02.047

    CAS  Article  Google Scholar 

  7. Güvenalp Z, Özbek H, Dursunoğlu B, Yuca H, Gözcü S, Çil YM, Kazaz C, Kara K, Demirezer ÖL (2017) α-Amylase and α-glucosidase inhibitory activities of the herbs of Artemisia dracunculus L. and its active constituents. Med Chem Res 26:3209–3215. https://doi.org/10.1007/s00044-017-2014-7

    CAS  Article  Google Scholar 

  8. Kaneshima T, Myoda T, Nakata M, Fujimori T, Toeda K, Nishizawa M (2016) Antioxidant activity of C-glycosidic ellagitannins from the seeds and peel of camu-camu (Myrciaria dubia). LWT Food Sci Technol 69:76–81. https://doi.org/10.1016/j.lwt.2016.01.024

    CAS  Article  Google Scholar 

  9. Kim SY, Gao JJ, Lee WC, Ryu KS, Lee KR, Kim YC (1999) Antioxidative flavonoids from the leaves of Morus alba. Arch Pharm Res 22(1):81–85. https://doi.org/10.1007/BF02976442

    CAS  Article  PubMed  Google Scholar 

  10. Kim JS, Kwon YS, Sa YJ, Kim MJ (2011) Isolation and identification of sea buckthorn (Hippophae rhamnoides) phenolics with antioxidant activity and α-glucosidase inhibitory effect. J Agric Food Chem 59:138–144. https://doi.org/10.1021/jf103130a

    CAS  Article  PubMed  Google Scholar 

  11. Kumar A, Aswal S, Semwal RB, Chauhan A, Joshi SK, Semwal DK (2019) Role of plant-derived alkaloids against diabetes and diabetes-related complications: a mechanism-based approach. Phytochem Rev 18:1277–1298. https://doi.org/10.1007/s11101-019-09648-6

    CAS  Article  Google Scholar 

  12. Li TS, Schroeder WR (1996) Sea buckthorn (Hippophae rhamnoides L.): a multipurpose plant. HortTechnology 6:370–380. https://doi.org/10.21273/HORTTECH.6.4.370

    Article  Google Scholar 

  13. Lim SS, Jung YJ, Hyun SK, Lee YS, Choi JS (2006) Rat lens aldose reductase inhibitory constituents of Nelumbo nucifera stamens. Phytother Res 20(10):825–830. https://doi.org/10.1002/ptr.1847

    CAS  Article  PubMed  Google Scholar 

  14. Luo JG, Ma L, Kong LY (2008) New triterpenoid saponins with strong alpha-glucosidase inhibitory activity from the roots of Gypsophila oldhamiana. Bioorg Med Chem 16:2912–2920. https://doi.org/10.1016/j.bmc.2007.12.053

    CAS  Article  PubMed  Google Scholar 

  15. Nampoothiri SV, Prathapan A, Cherian OL, Raghu KG, Venugopalan VV, Sundaresan A (2011) In vitro antioxidant and inhibitorypotential of Terminalia bellerica and Emblica officinalis fruits against LDL oxidation and key enzymes linked to type 2 diabetes. Food Chem Toxicol 49:125–131. https://doi.org/10.1016/j.fct.2010.10.006

    CAS  Article  PubMed  Google Scholar 

  16. Nasser ALM, Mazzolin LP, Hiruma-Lima CA, Santos LS, Eberlin MN, de Souza Brito AM, Vilegas W (2006) Preparative droplet counter-current chromatography for the separation of the new nor-seco-triterpene and pentacyclic triterpenoids from Qualea parviflora. Chromatographia 64(11):695–699. https://doi.org/10.1365/s10337-006-0087-4

    CAS  Article  Google Scholar 

  17. Okuda T, Yoshida T, Ashida M, Yazaki K (1983) Tannis of Casuarin and Stachyurus species. Part 1. Structures of pendunculagin, casuarictin, strictinin, casuarinin, casuariin, and stachyurin. J Chem Soc 1:1765–1772. https://doi.org/10.1039/P19830001765

    Article  Google Scholar 

  18. Olas B (2016) Sea buckthorn as a source of important bioactive compounds in cardiovascular diseases. Food Chem Toxicol 97:199–204. https://doi.org/10.1016/j.fct.2016.09.008

    CAS  Article  PubMed  Google Scholar 

  19. Özbek H, Yuca H, Gözcü S, Dursunoğlu B, Özenver N, Güvenalp Z, Kazaz C, Önal M, Demirezer LÖ (2019) Phenolic Compounds from Cotinus coggygria Scop. with Alpha Glucosidase Inhibition. FABAD J Pharm Sci 44:127–132

    Google Scholar 

  20. Parim B, Uddandrao VS, Saravanan G (2019) Diabetic cardiomyopathy: molecular mechanisms, detrimental effects of conventional treatment, and beneficial effects of natural therapy. Heart Fail Rev 24:279–299. https://doi.org/10.1007/s10741-018-9749-1

    Article  PubMed  Google Scholar 

  21. Petrus AJA, Hemalatha SS, Suguna G (2012) Isolation and characterisation of the antioxidant phenolic metabolites of Boerhaavia erecta L. leaves. Int J Pharm Sci Res 4(7):1856–1861

    CAS  Google Scholar 

  22. Rafalska A, Abramowicz K, Krauze M (2017) Sea buckthorn (Hippophae rhamnoides L.) as a plant for universal application. World Sci News 72:123–140

    CAS  Google Scholar 

  23. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Reddy BM, Rao NK, Ramesh M, Rao AA, Lin LJ, Lin LZ, Cordell GA (1994) Chemical investigation of the fruits of Terminalia chebula. Int J Pharmacol 32:352–356. https://doi.org/10.3109/13880209409083014

    CAS  Article  Google Scholar 

  25. Rösch D, Krumbein A, Mügge C, Kroh LW (2004) Structural investigations of flavonol glycosides from sea buckthorn (Hippophaë rhamnoides) pomace by NMR spectroscopy and HPLC-ESI-MS n. J Agric Food Chem 52:4039–4046. https://doi.org/10.1021/jf0306791

    CAS  Article  PubMed  Google Scholar 

  26. Souza-Moreira TM, Severi JA, Lee K, Preechasuth K, Santos E, Gow NA, Munro CA, Vilegas W, Pietro RC (2013) Anti-Candida targets and cytotoxicity of casuarinin isolated from Plinia cauliflora leaves in a bioactivity-guided study. Molecules 18(7):8095–8108. https://doi.org/10.3390/molecules18078095

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Toda M, Kawabata J, Kasai T (2001) Inhibitory effects of ellagi- and gallotannins on rat intestinal alpha-glucosidase complexes. Biosci Biotechnol Biochem 65:542–547. https://doi.org/10.1271/bbb.65.542

    CAS  Article  PubMed  Google Scholar 

  28. Vilas-Franquesa A, Saldo J, Juan B (2020) Potential of sea buckthorn-based ingredients for the food and feed industry–a review. Food Prod Proc Nutr 2:1–17. https://doi.org/10.1186/s43014-020-00032-y

    Article  Google Scholar 

  29. Wubshet SG, Moresco HH, Tahtah Y, Brighente IMC, Staerk D (2015) High-resolution bioactivity profiling combined with HPLC-HRMS-SPE-NMR: alpha-glucosidase inhibitors and acetylated ellagic acid rhamnosides from Myrcia palustris DC. (Myrtaceae). Phytochemistry 116:246–252. https://doi.org/10.1016/j.phytochem.2015.04.004

    CAS  Article  PubMed  Google Scholar 

  30. Yordi EG, Pérez EM, Matos MJ, Villares EU (2012) Antioxidant and pro-oxidant effects of polyphenolic compounds and structure-activity relationship evidence. In: Bouayed J (ed) Nutrition well-being and health, e-book pp 23–48. https://doi.org/10.5772/29471

  31. Zeb A (2004) Important therapeutic uses of Sea Buckthorn (Hippophae): a review. Res J Biol Sci 4:687–693. https://doi.org/10.3923/jbs.2004.687.693

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Ataturk University (Nos. TSA-2018-6447 and THD-2018-6912). The authors would like to thank Forest Engineer, MSc Mehmet ÖNAL, the Eastern Anatolia Forestry Research Institute for identification of the plant.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hafize Yuca.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11696_2021_1904_MOESM1_ESM.pdf

The concentration–response curves obtained from all the assays of standard compounds, extracts, and isolated compounds are presented as supplementary material 1 (SM-1) (PDF 1183 KB)

11696_2021_1904_MOESM2_ESM.pdf

All of 1D-NMR and 2D-NMR spectra and 1H-NMR (DMSO-d6), 13C‑NMR (DMSO-d6) data of the isolated compounds are presented as supplementary material 2 (SM-2) (PDF 1812 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yuca, H., Özbek, H., Demirezer, L.Ö. et al. α-Glucosidase and α-amylase inhibitory potential of main compounds and drug candidates from Elaeagnus rhamnoides (L.) A. Nelson. Chem. Pap. (2021). https://doi.org/10.1007/s11696-021-01904-4

Download citation

Keywords

  • Elaeagnus rhamnoides
  • Elaeagnaceae
  • α-Glucosidase inhibition
  • Antioxidant activity
  • Arjunglucoside I
  • Casuarinin