Skip to main content
Log in

Polythiophene-based MWCNTCOOH@RGO nanocomposites as a modified glassy carbon electrode for the electrochemical detection of Hg(II) ions

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In this work, a new nanocomposite, polythiophene (PTH)/carboxylic acid-functionalized multiwalled carbon nanotubes (MWCNTCOOH) and reduced graphene oxide (RGO), was prepared by an in situ oxidative polymerization route with different mass ratios (2%, 5%, 10%, and 20%). The synthesized PTH/MWCNTCOOH-RGO were then used to modify a glassy carbon electrode (GCE) to construct a voltammetric sensor for sensitive detection of Hg(II). The modified polymers were described by different microscopic, spectroscopic, and thermal analysis techniques. Electrochemical features of the new electrodes were identified by cyclic voltammetry (CV) and square wave voltammetry (SWV) techniques. The PTH/MWCNTCOOH-RGO (10%)/GCE exhibited high performance for Hg(II) detection compared to other nanocomposites. The PTH/MWCNTCOOH-RGO (10%)/GCE showed a low detection limit (0.009 µM); wide linear range (0.1–25 µM); and excellent stability, reproducibility, and selectivity. The practical application of the PTH/MWCNTCOOH-RGO (10%)/GCE was confirmed by the detection of Hg(II) in a tap water sample, and the recovery was between 110.7 and 96.79%.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Acharya A, Mishra R, Roy GS (2010) Characterization of CdSe/polythiophene nanocomposite by TGA/DTA, XRD, UV-VIS spectroscopy. SEM-EDXA and FTIR. Armen J Phys 3(3):195–202

    CAS  Google Scholar 

  • Afkhami A, Bagheri H, Khoshsafar H, Saber-Tehrani M, Tabatabaee M, Shirzadmehr A (2012) Simultaneous trace-levels determination of Hg (II) and Pb (II) ions in various samples using a modified carbon paste electrode based on multi-walled carbon nanotubes and a new synthesized Schiff base. Anal Chim Acta 746:98–106

    CAS  PubMed  Google Scholar 

  • Alizadeh T, Hamidi N, Ganjali MR, Rafiei F (2018) Determination of subnanomolar levels of mercury (II) by using a graphite paste electrode modified with MWCNTs and Hg (II)-imprinted polymer nanoparticles. Microchim Acta 185(1):1–9

    Google Scholar 

  • Alqarni SA, Hussein MA, Ganash AA (2018) Highly Sensitive and Selective Electrochemical Determination of Sunset Yellow in Food Products Based on AuNPs/PANI-co-PoAN-co-PoT/GO/Au Electrode. Polym for Adv Technol 3(46):13167–13177

    CAS  Google Scholar 

  • Avilés F, Cauich-Rodríguez JV, Moo-Tah L, May-Pat A, Vargas-Coronado R (2009) Evaluation of mild acid oxidation treatments for MWCNT functionalization. Carbon N Y 47(13):2970–2975

    Google Scholar 

  • Bard A (1980) Electrochemical Methods: Fundamentals and Applications, vol 290. Wiley, Hoboken

    Google Scholar 

  • Cesiulis H, Tsyntsaru N, Ramanavicius A, Ragoisha G (2016) The study of thin films by electrochemical impedance spectroscopy. In: Tiginyanu I, Topala P, Ursaki V (eds) Nanostructures and thin films for multifunctional applications. Springer, Berlin, pp 3–42

    Google Scholar 

  • Chang H-Y, Hsiung T-M, Huang Y-F, Huang C-C (2011) Using rhodamine 6G-modified gold nanoparticles to detect organic mercury species in highly saline solutions. Environ Sci Technol 45(4):1534–1539

    CAS  PubMed  Google Scholar 

  • Deshmukh MA, Shirsat MD, Ramanaviciene A, Ramanavicius A (2018a) Composites based on conducting polymers and carbon nanomaterials for heavy metal ion sensing (review). Crit Rev Anal Chem 48(4):293–304. https://doi.org/10.1080/10408347.2017.1422966

    Article  CAS  PubMed  Google Scholar 

  • Deshmukh MA, Shirsat MD, Ramanaviciene A, Ramanavicius A (2018b) Composites based on conducting polymers and carbon nanomaterials for heavy metal ion sensing (review). Crit Rev Anal Chem 48:293–304

    CAS  PubMed  Google Scholar 

  • Deshmukh MA et al (2018c) EDTA-modified PANI/SWNTs nanocomposite for differential pulse voltammetry based determination of Cu (II) ions. Sensors Actuators B Chem 260:331–338

    CAS  Google Scholar 

  • Deshmukh MA, Bodkhe GA, Shirsat S, Ramanavicius A, Shirsat MD (2018d) Nanocomposite platform based on EDTA modified Ppy/SWNTs for the sensing of Pb (II) ions by electrochemical method. Front Chem 6:451

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deshmukh MA, Celiesiute R, Ramanaviciene A, Shirsat MD, Ramanavicius A (2018e) EDTA_PANI/SWCNTs nanocomposite modified electrode for electrochemical determination of copper (II), lead (II) and mercury (II) ions. Electrochim Acta 259:930–938

    CAS  Google Scholar 

  • Desimoni E, Brunetti B (2013) Presenting analytical performances of electrochemical sensors. Some suggestions. Electroanalysis 25(7):1645–1651. https://doi.org/10.1002/elan.201300150

    Article  CAS  Google Scholar 

  • Farida AN, Fitriany E, Baktir A, Kurniawan F, Harsini M (2019) Voltammetric study of ascorbic acid using polymelamine/gold nanoparticle modified carbon paste electrode. IOP Conf Ser: Earth Environ Sci 217(1):12004

    Google Scholar 

  • Fu X-C, Wu J, Nie L, Xie C-G, Liu J-H, Huang X-J (2012) Electropolymerized surface ion imprinting films on a gold nanoparticles/single-wall carbon nanotube nanohybrids modified glassy carbon electrode for electrochemical detection of trace mercury (II) in water. Anal Chim Acta 720:29–37

    CAS  PubMed  Google Scholar 

  • Ganash AA, Alqarni SA, Hussein MA (2019) “Poly(aniline-co-o-anisidine)/graphene oxide Au nanocomposites for dopamine electrochemical sensing application. Appl Electron Chem 49:179–194

    CAS  Google Scholar 

  • GunaVathana SD, Wilson J, Prashanthi R, Peter AC (2020) CuO nanoflakes anchored polythiophene nanocomposite: voltammetric detection of L-tryptophan. Inorg Chem Commun 124:108398

    Google Scholar 

  • GunaVathana SD, Thivya P, Wilson J, Peter AC (2020) Sensitive voltammetric sensor based on silver dendrites decorated polythiophene nanocomposite: selective determination of L-Tryptophan. J Mol Struct. https://doi.org/10.1016/j.molstruc.2019.127649

    Article  Google Scholar 

  • Gupta V, Saleh TA (2011) Synthesis of Carbon Nanotube-Metal Oxides Composites, Adsorption and Photo-degradation, Carbon Nanotubes-From Research to Applications. Croat Eur Union 17:295–312

    Google Scholar 

  • Han FX, Patterson WD, Xia Y, Sridhar BBM, Su Y (2006) Rapid determination of mercury in plant and soil samples using inductively coupled plasma atomic emission spectroscopy, a comparative study. Water Air Soil Pollut 170(1):161–171

    CAS  Google Scholar 

  • Hu B, Hu L-L, Chen M-L, Wang J-H (2013) A FRET ratiometric fluorescence sensing system for mercury detection and intracellular colorimetric imaging in live Hela cells. Biosens Bioelectron 49:499–505

    CAS  PubMed  Google Scholar 

  • Husain A, Ahmad S, Shariq MU, Khan MMA (2020a) Ultra-sensitive, highly selective and completely reversible ammonia sensor based on polythiophene/SWCNT nanocomposite. Materialia 10:100704

    CAS  Google Scholar 

  • Husain A, Ahmad S, Mohammad F (2020b) Synthesis, characterisation and ethanol sensing application of polythiophene/graphene nanocomposite. Mater Chem Phys. https://doi.org/10.1016/j.matchemphys.2019.122324

    Article  Google Scholar 

  • Husain A, Ahmad S, Mohammad F (2020c) Electrical conductivity and alcohol sensing studies on polythiophene/tin oxide nanocomposites. J Sci Adv Mater Devices 5(1):84–94. https://doi.org/10.1016/j.jsamd.2020.01.002

    Article  Google Scholar 

  • Hussein MA, Ganash AA, Alqarni SA (2019) Electrochemical sensor-based gold nanoparticle/poly(aniline-co-o-toluidine)/graphene oxide nanocomposite modified electrode for hexavalent chromium detection: a real test sample. Polym Technol Mater 58(13):1423–1436

    CAS  Google Scholar 

  • Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60

    PubMed  PubMed Central  Google Scholar 

  • Jeromiyas N, Elaiyappillai E, Kumar AS, Huang S-T, Mani V (2019) Bismuth nanoparticles decorated graphenated carbon nanotubes modified screen-printed electrode for mercury detection. J Taiwan Inst Chem Eng 95:466–474

    CAS  Google Scholar 

  • Kalathil S, Nguyen VH, Shim J-J, Khan MM, Lee J, Cho MH (2013) Enhanced performance of a microbial fuel cell using CNT/MnO2 nanocomposite as a bioanode material. J Nanosci Nanotechnol 13(11):7712–7716

    CAS  PubMed  Google Scholar 

  • Kang H et al (2020) Using boronic acid functionalization to simultaneously enhance electrical conductivity and thermoelectric performance of free-standing polythiophene film. Eur Polym J 144:110208

    Google Scholar 

  • Katowah DF et al (2020) Designed network of ternary core-shell PPCOT/NiFe2O4/C-SWCNTs nanocomposites. A selective Fe3+ ionic sensor. J Alloys Compd 834:155

    Google Scholar 

  • Katowah DF et al (2020a) The Performance of Various SWCNT Loading into CuO–PMMA Nanocomposites Towards the Detection of Mn2+ Ions. J Inorg Organomet Polym Mater 30:5024–5041

    CAS  Google Scholar 

  • Katowah DF et al (2020b) Selective Hg2+ sensor performance based various carbon-nanofillers into CuO-PMMA nanocomposites. Polym Adv Technol 31(9):1946–1962

    CAS  Google Scholar 

  • Katowah DF, Mohammed GI, Al-Eryani DA, Sobahi TR, Hussein MA (2020c) Rapid and sensitive electrochemical sensor of cross-linked polyaniline/oxidized carbon nanomaterials core-shell nanocomposites for determination of 2, 4-dichlorophenol. PLoS ONE 15(6):e0234815

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khadka R et al (2019) Investigating electrochemical stability and reliability of gold electrode-electrolyte systems to develop bioelectronic nose using insect olfactory receptor. Electroanalysis 31(4):726–738

    CAS  Google Scholar 

  • Khan ME, Khan MM, Cho MH (2018) Recent progress of metal–graphene nanostructures in photocatalysis. Nanoscale 10:9427–9440

    CAS  PubMed  Google Scholar 

  • Khan FSA, Mubarak NM, Khalid M, Khan MM, Tan YH, Walvekar R, Abdullah EC, Karri RR, Rahman ME (2021) Comprehensive review on carbon nanotubes embedded in different metal and polymer matrix: fabrications and applications. Crit Rev Solid State Mater Sci. https://doi.org/10.1080/10408436.2021.1935713

    Article  Google Scholar 

  • Khanmohammadi S et al (2018) Polythiophene/TiO2 and polythiophene/ZrO2 nanocomposites: physical and antimicrobial properties against common infections. Biointerface Res Appl Chem 8(4):3457–3462

    CAS  Google Scholar 

  • Krishnaveni P, Ganesh V (2021) Electron transfer studies of a conventional redox probe in human sweat and saliva bio-mimicking conditions. Sci Rep 11(1):1–13

    Google Scholar 

  • Lai C et al (2016) Sensitive and selective detection of mercury ions based on papain and 2, 6-pyridinedicarboxylic acid functionalized gold nanoparticles. RSC Adv 6(4):3259–3266

    CAS  Google Scholar 

  • Laviron E, Roullier L, Degrand C (1980) A multilayer model for the study of space distributed redox modified electrodes: Part II. Theory and application of linear potential sweep voltammetry for a simple reaction. J Electroanal Chem Interfacial Electrochem 112(1):11–23

    CAS  Google Scholar 

  • Li Y, Vamvounis G, Holdcroft S (2002) Tuning optical properties and enhancing solid-state emission of poly (thiophene) s by molecular control: a postfunctionalization approach. Macromolecules 35(18):6900–6906

    CAS  Google Scholar 

  • Li S et al (2018) Electrochemical microfluidics techniques for heavy metal ion detection. Analyst 143(18):4230–4246

    CAS  PubMed  Google Scholar 

  • Lu Y, Wang S, Xiong C, Hu G-H (2020) Synthesis and characterization of a liquid-like polythiophene and its potential applications. Synth Met 270:1166

    Google Scholar 

  • Madhu R, Sankar KV, Chen S-M, Selvan RK (2014) Eco-friendly synthesis of activated carbon from dead mango leaves for the ultrahigh sensitive detection of toxic heavy metal ions and energy storage applications. Rsc Adv 4(3):1225–1233

    CAS  Google Scholar 

  • Mahmoudian MR, Basirun WJ, Alias Y, MengWoi P (2020) Investigating the effectiveness of g-C3N4 on Pt/g-C3N4/polythiophene nanocomposites performance as an electrochemical sensor for Hg2+ detection. J Environ Chem Eng 8(5):104204

    CAS  Google Scholar 

  • Mårdalen J, Samuelsen EJ, Gautun OR, Carlsen PH (1992) X-ray scattering from oriented poly (3-alkylthiophenes). Synth Met 48(3):363–380

    Google Scholar 

  • Matlou GG, Nkosi D, Pillay K, Arotiba O (2016) Electrochemical detection of Hg (II) in water using self-assembled single walled carbon nanotube-poly (m-amino benzene sulfonic acid) on gold electrode. Sens Bio-Sensing Res 10:27–33

    Google Scholar 

  • Mirceski V, Skrzypek S, Stojanov L (2018) Square-wave voltammetry. ChemTexts 4(4):1–14

    Google Scholar 

  • Mohanadas D, Tukimin N, Sulaiman Y (2019) Simultaneous electrochemical detection of hydroquinone and catechol using poly (3, 4-ethylenedioxythiophene)/reduced graphene oxide/manganese dioxide. Synth Met 252:76–81

    CAS  Google Scholar 

  • Moutcine A et al (2020) Preparation, characterization and simultaneous electrochemical detection toward Cd (II) and Hg (II) of a phosphate/zinc oxide modified carbon paste electrode. Inorg Chem Commun 116:107911

    CAS  Google Scholar 

  • Pal C, Majumder S (2020) Ultra-low-level detection of mercury (Hg2+) heavy metal carcinogens in aqueous medium using electrochemistry. Mater Today Proc 29:1129–1131

    CAS  Google Scholar 

  • Pillay K, Cukrowska EM, Coville NJ (2013) Improved uptake of mercury by sulphur-containing carbon nanotubes. Microchem J 108:124–130

    CAS  Google Scholar 

  • Rajabi M, Hemmati M (2021) Comparison of two polythiophene nanocomposites-based dispersive micro solid-phase extraction procedures coupled with salt-induced/magnetic separations for efficient preconcentration of toxic metal ions from food samples. J Mol Liq 324:114997

    CAS  Google Scholar 

  • Raju V, Rani JV, Basak P (2020) Self-arranged polythiophene on multi-walled carbon nanotube templated composites: Synthesis and application in rechargeable aluminium battery. Electrochim Acta 361:137097

    CAS  Google Scholar 

  • Ramachandran T, Dhayabaran VV (2019) Utilization of a MnO2/polythiophene/rGO nanocomposite modified glassy carbon electrode as an electrochemical sensor for methyl parathion. J Mater Sci Electron 30(13):12315–12327. https://doi.org/10.1007/s10854-019-01590-9

    Article  CAS  Google Scholar 

  • RasulKhan B, Periakaruppan P, Ponnaiah SK, Venkatachalam G, Jeyaprabha B (2021) A new nanocomposite electrode of carbon quantum dots doped functionalized multi-walled carbon nanotubes for lethal mercury sensing. J Clust Sci 32(1):135–144

    CAS  Google Scholar 

  • Rodríguez C, Leiva E (2020) Enhanced heavy metal removal from acid mine drainage wastewater using double-oxidized multiwalled carbon nanotubes. Molecules 25(1):111

    Google Scholar 

  • Rovina K, Siddiquee S, Md Shaarani S (2019) An electrochemical sensor for the determination of tartrazine based on CHIT/GO/MWCNTs/AuNPs composite film modified glassy carbon electrode. Drug Chem Toxicol 44:447–457

    PubMed  Google Scholar 

  • Sakthinathan S et al (2020) Platinum incorporated mordenite zeolite modified glassy carbon electrode used for selective electrochemical detection of mercury ions. Microporous Mesoporous Mater 292:109770

    CAS  Google Scholar 

  • Sakthivel R, Kubendhiran S, Chen S-M, Kumar JV (2019) Rational design and facile synthesis of binary metal sulfides VS2-SnS2 hybrid with functionalized multiwalled carbon nanotube for the selective detection of neurotransmitter dopamine. Anal Chim Acta 1071:98–108

    CAS  PubMed  Google Scholar 

  • Sen P, Suresh K, Kumar RV, Kumar M, Pugazhenthi G (2016) A simple solvent blending coupled sonication technique for synthesis of polystyrene (PS)/multi-walled carbon nanotube (MWCNT) nanocomposites: effect of modified MWCNT content. J Sci Adv Mater Devices 1(3):311–323

    Google Scholar 

  • Senthilkumar B, Thenamirtham P, Selvan RK (2011) Structural and electrochemical properties of polythiophene. Appl Surf Sci 257(21):9063–9067

    CAS  Google Scholar 

  • Shetti NP, Nayaka DS, Malode SJ, Kulkarni RM (2018) An enhanced sensing platform for clozapine at 2.0% silver doped TiO2 nanoparticles-A sensitive detection. Mater Today Proc 5(10):21271–21278

    CAS  Google Scholar 

  • Singh B, Doong R-A, Chauhan DS, Dubey AK, Anshumali, (2018) Synthesis and characterization of Fe3O4/polythiophene hybrid nanocomposites for electroanalytical application. Mater Chem Phys 205:462–469. https://doi.org/10.1016/j.matchemphys.2017.11.040

    Article  CAS  Google Scholar 

  • Sun Y-F, Li J-J, Xie F, Wei Y, Yang M (2020) Ruthenium-loaded cerium dioxide nanocomposites with rich oxygen vacancies promoted the highly sensitive electrochemical detection of Hg (II). Sensors Actuators B Chem 320:128355

    CAS  Google Scholar 

  • Suvina V, Krishna SM, Nagaraju DH, Melo JS, Balakrishna RG (2018) Polypyrrole-reduced graphene oxide nanocomposite hydrogels: a promising electrode material for the simultaneous detection of multiple heavy metal ions. Mater Lett 232:209–212. https://doi.org/10.1016/j.matlet.2018.08.096

    Article  CAS  Google Scholar 

  • Swathy TS, Antony MJ (2020) Tangled silver nanoparticles embedded polythiophene-functionalized multiwalled carbon nanotube nanocomposites with remarkable electrical and thermal properties. Polymer (guildf) 189:122171

    CAS  Google Scholar 

  • Thakur AK, Majumder M, Choudhary RB, Pimpalkar SN (2016) Supercapacitor based on electropolymerized polythiophene and multiwalled carbon nanotubes composites. IOP Conf Ser: Mater Sci Eng 149(1):12166

    Google Scholar 

  • Thanh NM, Luyen ND, Toan TTT, Phong NH, Van Hop N (2019) Voltammetry determination of Pb(II), Cd(II), and Zn(II) at bismuth film electrode combined with 8-hydroxyquinoline as a complexing agent. J Anal Methods Chem. https://doi.org/10.1155/2019/4593135

    Article  PubMed  PubMed Central  Google Scholar 

  • Valderrama-García BX, Rodríguez-Alba E, Morales-Espinoza EG, Moineau Chane-Ching K, Rivera E (2016) Synthesis and characterization of novel polythiophenes containing pyrene chromophores: thermal, optical and electrochemical properties. Molecules 21(2):172

    PubMed  PubMed Central  Google Scholar 

  • Vijeth H, Ashokkumar SP, Yesappa L, Vandana M, Devendrappa H (2019) Camphor sulfonic acid surfactant assisted polythiophene nanocomposite for efficient electrochemical hydrazine sensor. Mater Res EXPRESS. https://doi.org/10.1088/2053-1591/ab5ef5

    Article  Google Scholar 

  • Walters JG, Ahmed S, Terrero Rodríguez IM, O’Neil GD (2020) Trace analysis of heavy metals (Cd, Pb, Hg) using native and modified 3D printed graphene/poly (lactic acid) composite electrodes. Electroanalysis 32(4):859–866

    CAS  Google Scholar 

  • Wang Q, Chan TR, Hilgraf R, Fokin VV, Sharpless KB, Finn MG (2003) Bioconjugation by copper (I)-catalyzed azide-alkyne [3+ 2] cycloaddition. J Am Chem Soc 125(11):3192–3193

    CAS  PubMed  Google Scholar 

  • Wu J, Wang W, Wang M, Liu H, Pan H (2016) Electrochemical Behavior and Direct Quantitative Determination of Tanshinone IIA in Micro-emulsion. Int J Electrochem Sci 11(6):5165–5179. https://doi.org/10.20964/2016.06.55

    Article  CAS  Google Scholar 

  • Wu W et al (2019) Simultaneous voltammetric determination of cadmium (II), lead (II), mercury (II), zinc (II), and copper (II) using a glassy carbon electrode modified with magnetite (Fe 3 O 4) nanoparticles and fluorinated multiwalled carbon nanotubes. Microchim Acta 186(2):1–10

    Google Scholar 

  • Xiong W, Zhang P, Liu S, Lv Y, Zhang D (2021) Catalyst-free synthesis of phenolic-resin-based carbon nanospheres for simultaneous electrochemical detection of Cu (II) and Hg (II). Diam Relat Mater 111:108170

    CAS  Google Scholar 

  • Yang W et al (2018) Reduced graphene oxide/carbon nanotube composites as electrochemical energy storage electrode applications. Nanoscale Res Lett 13(1):1–7

    Google Scholar 

  • Zejli H, Sharrock P, de Cisneros JLH-H, Naranjo-Rodriguez I, Temsamani KR (2005) Voltammetric determination of trace mercury at a sonogel–carbon electrode modified with poly-3-methylthiophene. Talanta 68(1):79–85

    CAS  PubMed  Google Scholar 

  • Zhang J, Zhao XS (2012) Conducting Polymers Directly Coated on Reduced Graphene Oxide Sheets as High-Performance Supercapacitor Electrodes. J Phys Chem C 116(9):5420–5426. https://doi.org/10.1021/jp211474e

    Article  CAS  Google Scholar 

  • Zhu X et al (2017) Alkaline intercalation of Ti3C2 MXene for simultaneous electrochemical detection of Cd (II), Pb (II), Cu (II) and Hg (II). Electrochim Acta 248:46–57

    CAS  Google Scholar 

  • Zuo Y et al (2016) Poly (3, 4-ethylenedioxythiophene) nanorods/graphene oxide nanocomposite as a new electrode material for the selective electrochemical detection of mercury (II). Synth Met 220:14–19

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aisha A. Ganash or Mahmoud A. Hussein.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 616 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AL-Refai, H.H., Ganash, A.A. & Hussein, M.A. Polythiophene-based MWCNTCOOH@RGO nanocomposites as a modified glassy carbon electrode for the electrochemical detection of Hg(II) ions. Chem. Pap. 76, 797–812 (2022). https://doi.org/10.1007/s11696-021-01864-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-021-01864-9

Keywords

Navigation