Skip to main content

Synthesis and properties of Sn-doped α-FeOOH nanoparticles

Abstract

Pure and Sn-doped goethite (α-FeOOH) nanoparticles with good uniformity were synthesized by a facile precipitation method. The effects of Sn doping on the particle size and shape, structural, thermal, vibrational, optical and photocatalytic properties of prepared goethite nanoparticles were investigated. The Sn4+-for-Fe3+ substitution in the crystal structure of goethite was proved by determination of a significant unit cell expansion (the effect of larger Sn4+ ions) and a substantial reduction of the hyperfine magnetic field (the effect of magnetic dilution by non-magnetic Sn4+ ions). Sn doping induced a decrease in length and an increase in thickness of goethite nanocrystallites and nanoparticles, i.e., the change in particle shape from thin goethite nanorods to shorter and thicker Sn-doped goethite nanoellipsoids and nanocuboids. Thermal dehydroxylation of goethite was shifted to significantly higher temperatures by the Sn4+-for-Fe3+ substitution. The optical band gap of goethite nanoparticles narrowed with the increased Sn4+-for-Fe3+ substitution. The visible light photocatalytic efficiency for rhodamine B (RhB) degradation by a heterogeneous photo-Fenton process was gradually enhanced by Sn doping from 38% for pure goethite nanorods to 55% for Sn-doped nanoellipsoids and 70% for Sn-doped goethite nanocuboids.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Amani-Ghadim AR, Alizadeh S, Khodam F, Rezvani Z (2015) Synthesis of rod-like α-FeOOH nanoparticles and its photocatalytic activity in degradation of an azo dye: empirical kinetic model development. J Mol Catal A 408:60–68. https://doi.org/10.1016/j.molcata.2015.06.037

    CAS  Article  Google Scholar 

  2. Berry FJ, Helgason Ö, Bohórquez A, Marco JF, McManus J, Moore EA, Morup S, Wynn PG (2000) Preparation and characterisation of tin-doped α-FeOOH (goethite). J Mater Chem 10:1643–1648. https://doi.org/10.1039/B001056L

    CAS  Article  Google Scholar 

  3. Bohn CD, Agrawal AK, Walter EC, Vaudin MD, Herzing AA, Haney PM, Talin AA, Szalai VA (2012) Effect of tin doping on α-Fe2O3 photoanodes for water splitting. J Phys Chem C 116:15290–15296. https://doi.org/10.1021/jp305221v

    CAS  Article  Google Scholar 

  4. Cambier P (1986) Infrared study of goethites of varying crystallinity and particle size: I. Interpretation of OH and lattice vibration frequencies. Clay Min 21:191–200. https://doi.org/10.1180/claymin.1986.021.2.08

    CAS  Article  Google Scholar 

  5. Cornell RM, Schwertmann U (2003) The iron oxides: Structure, properties, reactions, occurrence and uses, 2nd edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  6. de Souza WF, Guimarães IR, Oliveira LCA, Giroto AS, Guerreiro MC, Silva CLT (2010) Effect of Ni incorporation into goethite in the catalytic activity for the oxidation of nitrogen compounds in petroleum. Appl Catal A 381:36–41. https://doi.org/10.1016/j.apcata.2010.03.036

    CAS  Article  Google Scholar 

  7. Derie R, Ghodsi M, Calvo-Roche C (1976) DTA study of the dehydration of synthetic goethite α-FeOOH. J Thermal Anal 9:435–440. https://doi.org/10.1007/BF01909409

    CAS  Article  Google Scholar 

  8. dos Santos CA, Horbe AMC, Barcellos CMO, da Cunha JBM (2001) Some structure and magnetic effects of Ga incorporation on α-FeOOH. Solid State Commun 118:449–452. https://doi.org/10.1016/S0038-1098(01)00147-8

    Article  Google Scholar 

  9. Dunn HK, Feckl JM, Müller A, Fattakhova-Rohlfing D, Morehead SG, Roos J, Peter LM, Scheu C, Bein T (2014) Tin doping speeds up hole transfer during light-driven water oxidation at hematite photoanodes. Phys Chem Chem Phys 16:24610–24620. https://doi.org/10.1039/C4CP03946G

    CAS  Article  PubMed  Google Scholar 

  10. Ford RG, Bertsch PM (1999) Distinguishing between surface and bulk dehydration–dehydroxylation reactions in synthetic goethites by high-resolution thermogravimetric analysis. Clays Clay Miner 47:329–337. https://doi.org/10.1346/CCMN.1999.0470309

    CAS  Article  Google Scholar 

  11. Fysh SA, Clark PE (1982) Aluminous goethite: A Mössbauer study. Phys Chem Miner 8:180–187. https://doi.org/10.1007/BF00308241

    CAS  Article  Google Scholar 

  12. Gasser UG, Jeanroy E, Mustin C, Barres O, Nüesch R, Bethelin J, Herbillon AJ (1996) Properties of synthetic goethites with Co for Fe substitution. Clay Miner 31:465–476. https://doi.org/10.1180/claymin.1996.031.4.03

    CAS  Article  Google Scholar 

  13. Golden DC, Bowen LH, Weed SB, Bigham JM (1979) Mössbauer studies of synthetic and soil-occurring aluminum-substituted goethites. Soil Sci Soc Am J 43:802–808. https://doi.org/10.2136/sssaj1979.03615995004300040038x

    CAS  Article  Google Scholar 

  14. Hufnagel AG, Hajiyani H, Zhang S, Li T, Kasian O, Gault B, Breitbach B, Bein T, Fattakhova-Rohlfing D, Scheu C, Pentcheva R (2018) Why tin-doping enhances the efficiency of hematite photoanodes for water splitting – The full picture. Adv Funct Mater. https://doi.org/10.1002/adfm.201804472

    Article  Google Scholar 

  15. Inohara D, Maruyama H, Kakihara Y, Kurokawa H, Nakayama M (2018) Cobalt-doped goethite-type iron oxyhydroxide (α-FeOOH) for highly efficient oxygen evolution catalysis. ACS Omega 3:7840–7845. https://doi.org/10.1021/acsomega.8b01206

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Jiang JZ, Lin R, Lin W, Nielsen K, Mørup S, Dam-Johansen K, Clasen R (1997) Gas-sensitive properties and structure of nanostructured (α-Fe2O3)x–(SnO2)1x materials prepared by mechanical alloying. J Phys D Appl Phys 30:1459–1467. https://doi.org/10.1088/0022-3727/30/10/012

    CAS  Article  Google Scholar 

  17. Kakuta S, Numata T, Okayama T (2014) Shape effects of goethite particles on their photocatalytic activity in the decomposition of acetaldehyde. Catal Sci Technol 4:164–169. https://doi.org/10.1039/C3CY00768E

    CAS  Article  Google Scholar 

  18. Kanai H, Mizutani H, Tanaka T, Funabiki T, Yoshida S, Takano M (1992) X-Ray absorption study on the local structures of fine particles of α-Fe2O3–SnO2 gas sensors. J Mater Chem 2:703–707. https://doi.org/10.1039/JM9920200703

    CAS  Article  Google Scholar 

  19. Kang S, Wang G, Fang M, Wang H, Wang X, Cai W (2015) Water bath synthesis and enhanced photocatalytic performances of urchin-like micro/nanostructured α-FeOOH. J Mater Res 30:1629–1638. https://doi.org/10.1557/jmr.2015.103

    CAS  Article  Google Scholar 

  20. Klencsar Z, Kuzmann E, Vertes A (1996) User-friendly software for Mössbauer spectrum analysis. J Radioanal Nucl Chem 201:105–118. https://doi.org/10.1007/BF02055410

    Article  Google Scholar 

  21. Klug HP, Alexander LE (1974) X-Ray diffraction procedures: For polycrystalline and amorphous materials, 2nd edn. John Wiley & Sons, New York

    Google Scholar 

  22. Krehula S, Musić S (2008) Influence of aging in an alkaline medium on the microstructural properties of α-FeOOH. J Cryst Growth 310:513–520. https://doi.org/10.1016/j.jcrysgro.2007.10.072

    CAS  Article  Google Scholar 

  23. Krehula S, Musić S (2010) Growth of uniform lath-like α-(Fe, Al)OOH and disc-like α-(Fe, Al)2O3 nanoparticles in a highly alkaline medium. Mater Chem Phys 123:67–76. https://doi.org/10.1016/j.matchemphys.2010.03.063

    CAS  Article  Google Scholar 

  24. Krehula S, Popović S, Musić S (2002) Synthesis of acicular α-FeOOH particles at a very high pH. Mater Lett 54:108–113. https://doi.org/10.1016/S0167-577X(01)00546-8

    CAS  Article  Google Scholar 

  25. Krehula S, Musić S, Skoko Ž, Popović S (2006) The influence of Zn-dopant on the precipitation of α-FeOOH in highly alkaline media. J Alloys Compd 420:260–268. https://doi.org/10.1016/j.jallcom.2005.10.019

    CAS  Article  Google Scholar 

  26. Krehula S, Štefanić G, Zadro K, Kratofil Krehula L, Marciuš M, Musić S (2012) Synthesis and properties of iridium-doped hematite (α-Fe2O3). J Alloys Compd 545:200–209. https://doi.org/10.1016/j.jallcom.2012.08.009

    CAS  Article  Google Scholar 

  27. Krehula S, Kratofil Krehula L, Musić S (2013) Synthesis and microstructural properties of α-Fe1−xGaxOOH solid solutions. J Alloys Compd 581:335–343. https://doi.org/10.1016/j.jallcom.2013.07.076

    CAS  Article  Google Scholar 

  28. Krehula S, Ristić M, Kubuki S, Iida Y, Kratofil Krehula L, Musić S (2016) The effects of In3+ doping on the properties of precipitated goethite. J Alloys Compd 658:41–48. https://doi.org/10.1016/j.jallcom.2015.10.191

    CAS  Article  Google Scholar 

  29. Krehula S, Ristić M, Mitar I, Wu C, Li X, Jiang L, Wang J, Sun G, Zhang T, Perović M, Bošković M, Antić B, Musić S (2018) Synthesis and properties of Ni-doped goethite and Ni-doped hematite nanorods. Croat Chem Acta 91:389–401. https://doi.org/10.5562/cca3402

    CAS  Article  Google Scholar 

  30. Krehula S, Ristić M, Petrović Ž, Kratofil Krehula L, Mitar I, Musić S (2019) Effects of Cu doping on the microstructural, thermal, optical and photocatalytic properties of α-FeOOH and α-Fe2O3 1D nanoparticles. J Alloys Compd 802:290–300. https://doi.org/10.1016/j.jallcom.2019.06.133

    Article  Google Scholar 

  31. Lara-Rico R, Múzquiz-Ramos EM, López-Badillo CM, García-Pérez UM, Cruz-Ortiz BR (2019) Goethite–titania composite: disinfection mechanism under UV and visible light. RSC Adv 9:2792–2798. https://doi.org/10.1039/C8RA08412B

    CAS  Article  Google Scholar 

  32. Larralde AL, Ramos CP, Arcondo B, Tufo AE, Saragovi C, Sileo EE (2012) Structural properties and hyperfine characterization of Sn-substituted goethites. Mater Chem Phys 133:735–740. https://doi.org/10.1016/j.matchemphys.2012.01.075

    CAS  Article  Google Scholar 

  33. Larralde AL, Onna D, Fuentes KM, Sileo EE, Hojamberdiev M, Bilmes SA (2019) Heterogeneous photo-Fenton process mediated by Sn-substituted goethites with altered OH-surface density. J Photochem Photobiol A 381:111856. https://doi.org/10.1016/j.jphotochem.2019.111856

    CAS  Article  Google Scholar 

  34. Li S, Qin GW, Zhang Y, Pei W, Zuo L, Esling C (2010) Anisotropic Growth of Iron Oxyhydroxide Nanorods and their Photocatalytic Activity. Adv Eng Mater 12:1082–1085. https://doi.org/10.1002/adem.201000081

    CAS  Article  Google Scholar 

  35. Ling Y, Wang G, Wheeler DA, Zhang JZ, Li Y (2011) Sn-doped hematite nanostructures for photoelectrochemical water splitting. Nano Lett 11:2119–2125. https://doi.org/10.1021/nl200708y

    CAS  Article  PubMed  Google Scholar 

  36. Liu G, Liao S, Zhu D, Liu L, Cheng D, Zhou H (2011) Photodegradation of aniline by goethite doped with boron under ultraviolet and visible light irradiation. Mater Res Bull 46:1290–1295. https://doi.org/10.1016/j.materresbull.2011.03.033

    CAS  Article  Google Scholar 

  37. Liu H, Chen T, Frost RL (2014) An overview of the role of goethite surfaces in the environment. Chemosphere 103:1–11. https://doi.org/10.1016/j.chemosphere.2013.11.065

    CAS  Article  PubMed  Google Scholar 

  38. Luo W, Jiang C, Li Y, Shevlin SA, Han X, Qiu K, Cheng Y, Guo Z, Huang W, Tang J (2017) Highly crystallized α-FeOOH for a stable and efficient oxygen evolution reaction. J Mater Chem A 5:2021–2028. https://doi.org/10.1039/C6TA08719A

    CAS  Article  Google Scholar 

  39. Lutterotti L (2010) Total pattern fitting for the combined size–strain–stress–texture determination in thin film diffraction. Nucl Instrum Methods Phys Res B 268:334–340. https://doi.org/10.1016/j.nimb.2009.09.053

    CAS  Article  Google Scholar 

  40. Mohapatra M, Sahoo SK, Anand S, Das RP (2006) Removal of As(V) by Cu(II)-, Ni(II)-, or Co(II)-doped goethite samples. J Colloid Interface Sci 298:6–12. https://doi.org/10.1016/j.jcis.2005.11.052

  41. Müller M, Villalba JC, Mariani FQ, Dalpasquale M, Lemos MZ, Huila MFG, Anaissi FJ (2015) Synthesis and characterization of iron oxide pigments through the method of the forced hydrolysis of inorganic salts. Dyes Pigm 120:271–278. https://doi.org/10.1016/j.dyepig.2015.04.026

    CAS  Article  Google Scholar 

  42. Murad E, Bowen LH (1987) Magnetic ordering in Al-rich goethites: Influence of crystallinity. Am Mineral 72:194–200. https://rruff.info/doclib/am/vol72/AM72_194.pdf

  43. Murad E, Cashion J (2004) Mössbauer spectroscopy of environmental materials and their industrial utilization. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  44. Padhi DK, Parida K (2014) Facile fabrication of α-FeOOH nanorod/RGO composite: a robust photocatalyst for reduction of Cr(VI) under visible light irradiation. J Mater Chem A 2:10300–10312. https://doi.org/10.1039/C4TA00931B

    CAS  Article  Google Scholar 

  45. Qiu XQ, Lv L, Li G-S, Han W, Wang X-J, Li L-P (2008) Hydrated goethite nanorods: vibration spectral properties, thermal stability, and their potential application in removing cadmium ions. J Therm Anal Cal 91:873–878. https://doi.org/10.1007/s10973-007-8575-9

    CAS  Article  Google Scholar 

  46. Rani BJ, Ravi G, Yuvakkumar R, Ravichandran S, Ameen F, AlNadhary S (2019) Sn doped α-Fe2O3 (Sn=0,10,20,30 wt%) photoanodes for photoelectrochemical water splitting applications. Renew Energ 133:566–574. https://doi.org/10.1016/j.renene.2018.10.067

    CAS  Article  Google Scholar 

  47. Ristić M, De Grave E, Musić S, Popović S, Orehovec Z (2007) Transformation of low crystalline ferrihydrite to α-Fe2O3 in the solid state. J Mol Struct 834–836:454–460. https://doi.org/10.1016/j.molstruc.2006.10.016

    CAS  Article  Google Scholar 

  48. Rout K, Dash A, Mohapatra M, Anand S (2014) Manganese doped goethite: structural, optical and adsorption properties. J Environ Chem Eng 2:434–443. https://doi.org/10.1016/j.jece.2014.01.001

    CAS  Article  Google Scholar 

  49. Scheinost AC, Chavernas A, Barrón V, Torrent J (1998) Use and limitations of second-derivative diffuse reflectance spectroscopy in the visible to near-infrared range to identify and quantify Fe oxide minerals in soils. Clays Clay Miner 46:528–536. https://doi.org/10.1346/CCMN.1998.0460506

    CAS  Article  Google Scholar 

  50. Schulze DG, Schwertmann U (1984) The influence of aluminium on iron oxides: X. properties of Al-substituted goethites. Clay Miner 19:521–539. https://doi.org/10.1180/claymin.1984.019.4.02

    CAS  Article  Google Scholar 

  51. Schwertmann U (1984) The double dehydroxylation peak of goethite. Thermochim Acta 78:39–46. https://doi.org/10.1016/0040-6031(84)87130-0

    CAS  Article  Google Scholar 

  52. Schwertmann U, Cambier P, Murad E (1985) Properties of goethites of varying crystallinity. Clays Clay Miner 33:369–378. https://doi.org/10.1346/CCMN.1985.0330501

    CAS  Article  Google Scholar 

  53. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A 32:751–767. https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  54. Sherman DM, Waite TD (1985) Electronic spectra of Fe3+ oxides and oxide hydroxides in the near IR to near UV. Am Mineral 70:1262–1269. http://www.minsocam.org/ammin/AM70/AM70_1262.pdf

  55. Sorescu M, Diamandescu L, Tomescu A, Tarabasanu-Mihaila D, Teodorescu V (2008) Structure and sensing properties of 0.1SnO2–0.9α-Fe2O3 system. Mater Chem Phys 107:127–131. https://doi.org/10.1016/j.matchemphys.2007.06.062

    CAS  Article  Google Scholar 

  56. Tanaka H, Miyafuji A, Ishikawa T, Nakayama T (2018) Influence of Ni(II), Cu(II) and Cr(III) on the formation, morphology and molecular adsorption properties of α-FeOOH rust particles prepared by aerial oxidation of neutral Fe(II) solutions. Adv Powder Technol 29:9–17. https://doi.org/10.1016/j.apt.2017.09.015

    CAS  Article  Google Scholar 

  57. Tauc J, Grigorovici R, Vancu A (1966) Optical properties and electronic structure of amorphous germanium. Phys Status Solidi 15:627–637. https://doi.org/10.1002/pssb.19660150224

    CAS  Article  Google Scholar 

  58. Thies-Weesie DME, de Hoog JP, Mendiola MHH, Petukhov AV, Vroege GJ (2007) Synthesis of goethite as a model colloid for mineral liquid crystals. Chem Mater 19:5538–5546. https://doi.org/10.1021/cm071229h

    CAS  Article  Google Scholar 

  59. Verdonck L, Hoste S, Roelandt FF, Van Der Kelen GP (1982) Normal coordinate analysis of α-FeOOH – a molecular approach. J Mol Struct 79:273–279. https://doi.org/10.1016/0022-2860(82)85065-5

    CAS  Article  Google Scholar 

  60. Wang C, Li A, Shuang C (2018) The effect on ozone catalytic performance of prepared-FeOOH by different precursors. J Environ Manage 228:158–164. https://doi.org/10.1016/j.jenvman.2018.08.103

    CAS  Article  PubMed  Google Scholar 

  61. Wells MA, Fitzpatrick RW, Gilkes RJ (2006) Thermal and mineral properties of Al-, Cr-, Mn-, Ni- and Ti-substituted goethite. Clays Clay Miner 54:176–194. https://doi.org/10.1346/CCMN.2006.0540204

    CAS  Article  Google Scholar 

  62. Xie W, Chen H, Zhang X, Hu X, Li G (2013) Preparation and photocatalytic activity of rutile TiO2 and goethite composite photocatalysts. Chin J Catal 34:1076–1086. https://doi.org/10.1016/S1872-2067(12)60569-5

    CAS  Article  Google Scholar 

  63. Xu J, Li Y, Yuan B, Shen C, Fu M, Cui H, Sun W (2016) Large scale preparation of Cu-doped α-FeOOH nanoflowers and their photo-Fenton-like catalytic degradation of diclofenac sodium. Chem Eng J 291:174–183. https://doi.org/10.1016/j.cej.2016.01.059

    CAS  Article  Google Scholar 

  64. Zhang H, Bayne M, Fernando S, Legg B, Zhu M, Penn RL, Banfield JF (2011) Size-dependent bandgap of nanogoethite. J Phys Chem C 115:17704–17710. https://doi.org/10.1021/jp205192a

    CAS  Article  Google Scholar 

  65. Zhou X, Yang H, Wang C, Mao X, Wang Y, Yang Y, Liu G (2010) Visible light induced photocatalytic degradation of rhodamine B on one-dimensional iron oxide particles. J Phys Chem C 114:17051–17061. https://doi.org/10.1021/jp103816e

    CAS  Article  Google Scholar 

  66. Zhou Z, Lan J, Liu G, Deng K, Yang Y, Nie G, Yu J, Zhi L (2012) Facet-mediated photodegradation of organic dye over hematite architectures by visible light. Angew Chem Int Ed 51:178–182. https://doi.org/10.1002/anie.201105028

    CAS  Article  Google Scholar 

Download references

Funding

This research was supported by the Croatian Science Foundation (project number IP-2016-06-8254).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stjepko Krehula.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 979 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Popov, N., Ristić, M., Robić, M. et al. Synthesis and properties of Sn-doped α-FeOOH nanoparticles. Chem. Pap. (2021). https://doi.org/10.1007/s11696-021-01802-9

Download citation

Keywords

  • Goethite
  • Mössbauer spectroscopy
  • Nanoparticles
  • Optical band gap
  • Sn dopant
  • Visible light photocatalyst