Arshad SN, Naraghi M, Chasiotis I (2011) Strong carbon nanofibers from electrospun polyacrylonitrile. Carbon 49(5):1710–1719
CAS
Article
Google Scholar
Benhammada A, Trache D (2019) Thermal decomposition of energetic materials using TG-FTIR and TG-MS: a state-of-the-art review. Appl Spectrosc Rev 55(8):724–777
Article
CAS
Google Scholar
Bhatt P, Goe A (2017) Carbon fibres: production, properties and potential use. Mater Sci Res India 14(1):52–57
CAS
Article
Google Scholar
Chen J, Ma X, Yu Z, Deng T, Chen X, Chen L, Dai M (2019) A study on catalytic co-pyrolysis of kitchen waste with tire waste over ZSM-5 using TG-FTIR and Py-GC/MS. Bioresour Technol 289:121585
CAS
PubMed
Article
Google Scholar
Chen M, Liang B, Guo Y, Li C, He X, Hu J, Li R, Zeng K, Yang G (2020a) Pyrolysis mechanism of polyimide containing bio-molecule adenine building block. Polym Degrad Stab 175:109124
CAS
Article
Google Scholar
Chen S, Qiu L, Cheng H-M (2020b) Carbon-based fibers for advanced electrochemical energy storage devices. Chem Rev 120(5):2811–2878
CAS
PubMed
Article
Google Scholar
Chu Y, Zhang P, Hu J, Yang W, Wang C (2009) Synthesis of monodispersed Co (Fe)/carbon nanocomposite microspheres with very high saturation magnetization. J Phys Chem C 113(10):4047–4052
CAS
Article
Google Scholar
Cipriani E, Zanetti M, Bracco P, Brunella V, Luda MP, Costa L (2016) Crosslinking and carbonization processes in PAN films and nanofibers. Polym Degrad Stab 123:178–188
CAS
Article
Google Scholar
Fa Rsani R, Raissi S, Shokuh Fa RA, Sedghi A (2011) FT-IR Study of Stabilized PAN Fibers for Fabrication of Carbon Fibers. Proc World Aca Ence Eng Technolog 38:434
Google Scholar
Fu Z, Liu B, Sun L, Zhang H (2017) Study on the thermal oxidative stabilization reactions and the formed structures in polyacrylonitrile during thermal treatment. Polym Degrad Stab 140:104–113
CAS
Article
Google Scholar
Fushimi A, Tanabe K, Hasegawa S, Kobayashi S (2007) Investigation of characterization method for nanoparticles in roadside atmosphere by thermal desorption-gas chromatography/mass spectrometry using a pyrolyzer. Sci Total Environ 386(1–3):83–92
CAS
PubMed
Article
Google Scholar
Grassie N, McGuchan R (1970) Pyrolysis of polyacrylonitrile and related polymers—I. Thermal analysis of polyacrylonitrile. Eur Polym J 6(9):1277–1291
CAS
Article
Google Scholar
Hammel E, Tang X, Trampert M, Schmitt T, Mauthner K, Eder A, Pötschke P (2004) Carbon nanofibers for composite applications. Carbon 42(5):1153–1158
CAS
Article
Google Scholar
Hassan MF, Sabri MA, Fazal H, Hafeez A, Shezad N, Hussain M (2020) Recent trends in activated carbon fibers production from various precursors and applications—A comparative review. J Anal Appl Pyrol 145:104715
CAS
Article
Google Scholar
Kantürk Figen A, Coşkuner Filiz B (2019) Polymeric and metal oxide structured nanofibrous composites fabricated by electrospinning as highly efficient hydrogen evolution catalyst. J Colloid Interface Sci 533:82–94
PubMed
Article
CAS
Google Scholar
Karbownik, I., Rac-Rumijowska, O., Fiedot-Tobola, M., Rybicki, T., Teterycz, H. 2019. The Preparation and Characterization of Polyacrylonitrile-Polyaniline (PAN/PANI) Fibers. Materials (Basel), 12(4):664.
Khayyam, H., Jazar, R.N., Nunna, S., Golkarnarenji, G., Badii, K., Fakhrhoseini, S.M., Kumar, S., Naebe, M. 2020. PAN precursor fabrication, applications and thermal stabilization process in carbon fiber production: Experimental and mathematical modelling. Progress in Materials Science, 107:100575.
Kim J-G, Kim H-C, Kim ND, Khil M-S (2020) N-doped hierarchical porous hollow carbon nanofibers based on PAN/PVP@SAN structure for high performance supercapacitor. Compos B Eng 186:107825
CAS
Article
Google Scholar
Lee H-M, Kim H-G, Kang S-J, Park S-J, An K-H, Kim B-J (2015) Effects of pore structures on electrochemical behaviors of polyacrylonitrile (PAN)-based activated carbon nanofibers. J Ind Eng Chem 21:736–740
CAS
Article
Google Scholar
Liu Y, Chae HG, Kumar S (2011) Gel-spun carbon nanotubes/polyacrylonitrile composite fibers Part II. Stabilization reaction kinetics and effect of gas environment. Carbon 49(13):4477–4486
CAS
Article
Google Scholar
Liu L, Jia C, He J, Zhao F, Fan D, Xing L, Wang M, Wang F, Jiang Z, Huang Y (2015) Interfacial characterization, control and modification of carbon fiber reinforced polymer composites. Compos Sci Technol 121:56–72
CAS
Article
Google Scholar
Liu X, Naylor Marlow M, Cooper SJ, Song B, Chen X, Brandon NP, Wu B (2018) Flexible all-fiber electrospun supercapacitor. J Power Sour 384:264–269
CAS
Article
Google Scholar
Ma W, Rajput G, Pan M, Lin F, Zhong L, Chen G (2019) Pyrolysis of typical MSW components by Py-GC/MS and TG-FTIR. Fuel 251:693–708
CAS
Article
Google Scholar
Mintova S, Hölzl M, Valtchev V, Mihailova B, Bouizi Y, Bein T (2004) Closely packed zeolite nanocrystals obtained via transformation of porous amorphous silica. Chem Mater 16(25):5452–5459
CAS
Article
Google Scholar
Nataraj SK, Yang KS, Aminabhavi TM (2012) Polyacrylonitrile-based nanofibers—A state-of-the-art review. Prog Polym Sci 37(3):487–513
CAS
Article
Google Scholar
Peng S, Li L, Kong Yoong Lee J, Tian L, Srinivasan M, Adams S, Ramakrishna S (2016) Electrospun carbon nanofibers and their hybrid composites as advanced materials for energy conversion and storage. Nano Energy 22:361–395
CAS
Article
Google Scholar
Qin X-H, Yang E-L, Li N, Wang S-Y (2007) Effect of different salts on electrospinning of polyacrylonitrile (PAN) polymer solution. J Appl Polym Sci 103(6):3865–3870
CAS
Article
Google Scholar
Qin X, Lu Y, Xiao H, Hao Y, Pan D (2011) Improving preferred orientation and mechanical properties of PAN-based carbon fibers by pretreating precursor fibers in nitrogen. Carbon 49(13):4598–4600
CAS
Article
Google Scholar
Qin X, Lu Y, Xiao H, Song Y (2012) Improving stabilization degree of stabilized fibers by pretreating polyacrylonitrile precursor fibers in nitrogen. Mater Lett 76:162–164
CAS
Article
Google Scholar
Rauti R, Musto M, Bosi S, Prato M, Ballerini L (2019) Properties and behavior of carbon nanomaterials when interfacing neuronal cells: How far have we come? Carbon 143:430–446
CAS
Article
Google Scholar
Ren Y, Tian T, Jiang L, Liu X, Han Z (2018) Polyvinyl alcohol reinforced flame-retardant polyacrylonitrile composite fiber prepared by boric acid cross-linking and phosphorylation. Materials 11(12):2391
PubMed Central
Article
CAS
Google Scholar
Ruiz-Cornejo JC, Sebastián D, Lázaro MJ (2020) Synthesis and applications of carbon nanofibers: a review. Rev Chem Eng 36(4):493–511
CAS
Article
Google Scholar
Sabantina L, Rodriguez-Cano MA, Klocker M, Garcia-Mateos FJ, Ternero-Hidalgo JJ, Mamun A, Beermann F, Schwakenberg M, Voigt AL, Rodriguez-Mirasol J, Cordero T, Ehrmann A (2018) Fixing PAN Nanofiber Mats during Stabilization for Carbonization and Creating Novel Metal/Carbon Composites. Polymers 10(7):735
PubMed Central
Article
CAS
Google Scholar
Sabantina L, Klöcker M, Wortmann M, Mirasol JR, Cordero T, Moritzer E, Finsterbusch K, Ehrmann A (2019) Stabilization of polyacrylonitrile nanofiber mats obtained by needleless electrospinning using dimethyl sulfoxide as solvent. J Ind Text 50(2):224–239
Article
CAS
Google Scholar
Sabet EN, Nourpanah P, Arbab S (2016) Quantitative analysis of entropic stress effect on the structural rearrangement during pre-stabilization of PAN precursor fibers. Polymer 90:138–146
CAS
Article
Google Scholar
Santhana Krishnan G, Murali N, Jafar Ahamed A (2017) Structural transformation, thermal endurance, and identification of evolved gases during heat treatment processes of carbon fiber polymer precursors focusing on the stereoregularity. J Therm Anal Calorim 129(2):821–832
CAS
Article
Google Scholar
Shahbeig H, Nosrati M (2020) Pyrolysis of biological wastes for bioenergy production: thermo-kinetic studies with machine-learning method and Py-GC/MS analysis. Fuel 269:117238
CAS
Article
Google Scholar
Sun, X., Song, J., Zhang, J., Liu, J., Ke, H., Wei, Q., Cai, Y. 2020. Effects of chemical pre-treatment on structure and property of polyacrylonitrile based pre-oxidized fibers. Journal of Engineered Fibers and Fabrics, 15:8946.
Tong J, Wang W, Li Q, Liu F, Ma W, Li W, Su B, Lei Z, Bo L (2017) Composite of FeCo alloy embedded in biocarbon derived from eggshell membrane with high performance for oxygen reduction reaction and supercapacitor. Electrochim Acta 248:388–396
CAS
Article
Google Scholar
Wang, Y., Sun, Y., Zong, Y., Zhu, T., Zhang, L., Li, X., Xing, H., Zheng, X. 2020. Carbon nanofibers supported by FeCo nanocrystals as difunctional magnetic/dielectric composites with broadband microwave absorption performance. Journal of Alloys and Compounds, 824:153980.
Wu Q, Xu R, Zhao R, Zhang X, Li W, Diao G, Chen M (2019) Tube-in-tube composite nanofibers with high electrochemistry performance in energy storage applications. Energy Storage Mater 19:69–79
Article
Google Scholar
Yusof N, Ismail AF (2012) Post spinning and pyrolysis processes of polyacrylonitrile (PAN)-based carbon fiber and activated carbon fiber: a review. J Anal Appl Pyrol 93:1–13
CAS
Article
Google Scholar
Yuzawa T, Hosaka A, Watanabe C, Tsuge S (2008) Evaluation of the thermal desorption-GC/MS Method for the determination of Decabromodiphenyl ether (DeBDE) in order of a few hundred ppm contained in a certified standard polystyrene sample. Analy Scie Int J Jpn Soc Analy Chem 24(8):953
CAS
Article
Google Scholar
Zabihi O, Ahmadi M, Li Q, Shafei S, Huson MG, Naebe M (2017) Carbon fibre surface modification using functionalized nanoclay: a hierarchical interphase for fibre-reinforced polymer composites. Compos Sci Technol 148:49–58
CAS
Article
Google Scholar
Zhang B, Kang F, Tarascon J-M, Kim J-K (2016a) Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage. Prog Mater Sci 76:319–380
CAS
Article
Google Scholar
Zhang J, Wang C, Chen J, Sun Y, Yan J, Zou Y, Xu W, Zhu D (2016b) The highly conducting carbon electrodes derived from spin-coated polyacrylonitrile films. Sci China Chem 59(6):672–678
CAS
Article
Google Scholar
Zhang W, Wang M, Zhang W, Liu W, Yang C, Shen R, Wu G (2018) Significantly reduced pre-oxidation period of PAN fibers by continuous electron beam irradiation: optimization by monitoring radical variation. Polym Degrad Stab 158:72–82
CAS
Article
Google Scholar
Zhou J, Liu G, Wang S, Zhang H, Xu F (2020) TG-FTIR and Py-GC/MS study of the pyrolysis mechanism and composition of volatiles from flash pyrolysis of PVC. J Energy Inst 93(6):2362–2370
CAS
Article
Google Scholar
Zhuang X, Song Y, Zhan H, Bi XT, Yin X, Wu C (2020) Pyrolytic conversion of biowaste-derived hydrochar: Decomposition mechanism of specific components. Fuel 266:117106
CAS
Article
Google Scholar