Skip to main content
Log in

Study of the drying characteristics in an asymmetric impinging stream reactor

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A short particle residence time results in inadequate and incomplete drying in impinging stream reactors. The fluid and particle motion process and temperature distribution in an asymmetric impinging stream reactor are studied and compared with those in a symmetric reactor, and the relationship between the drying characteristics and particle residence time is analysed. The research results show that the initial conditions of the particle and fluid and the geometric parameters of the reactor mainly determine the drying process and particle residence time in the high-temperature region. Reasonable settings of the factors v, Tm, Tp0, um, up0 and L/D and the particle position can greatly increase the particle residence time and ensure the completion of drying of the impinging stream reactor. Compared with the asymmetric impinging stream reactor with v = 0.7, the total residence time and the drying characteristics of the symmetric impinging stream reactor can be increased by 28.5% and 54.0%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

mp :

Particle mass, kg

Re:

Particle Reynolds number, -

V:

Inlet velocity ratio, s

Tm :

Fluid temperature, K

Tp :

Particle temperature, K

λm :

Fluid thermal conductivity, W/m·K

λp :

Particle thermal conductivity, W/m·K

Ap :

Particle area, m2

cp :

Heat capacity of a particle, J/kg·K

cp,g :

Heat capacity of fluid, J/kg·K

ttot :

Particle residence time in impinging stream reactor, s

t1 :

Particle residence time in the active area, s

t2 :

t2 = ttot -t1, s

t :

Tangential unit vector

ttota :

Lower value of ttot, s

ttotb :

Upper value of ttot, s

Nu:

Nusselt number

Pr:

Prandtl number

H:

Heat transfer coefficient, W/ m2·K

hfg :

Latent heat of vaporization, J/kg

n :

Normal unit vector

up0 :

Initial particle velocity, m/s

Vp :

Volume of particle, m3

Φ:

Outlet particle moisture content

φ0 :

Initial particle moisture content

Tp0 :

Initial particle temperature, K

σk:

Turbulent Prandtl number for k, -

σε:

Turbulent Prandtl number for ε, -

C:

Particle concentration, kg/m3

Sct :

Turbulent Schmidt number, -

Sh:

Sherwood number, -

Sc:

Schmidt number, -

K:

Mass transfer coefficient, m/s

Nt :

Molar flux of vapour, kg mol/m2·s

Ctp :

Vapour concentration at particle surface, kg mol/m3

Ctm :

Vapour concentration in gas phase, kg mol/m3

psat :

Saturation vapour pressure, Pa

Pop:

Operating pressure, Pa

Xi :

Local bulk mole fraction of vapour, -

dmp/dt:

Moisture evaporation rate, kg/s

Mw,i :

Molecular weight of water vapour, kg/kg mol

References

  • Berman Y, Tanklevsky A, Oren Y et al (2000a) Modeling and experimental studies of SO2 absorption in coaxial cylinders with impinging streams: Part I. Chem Eng Sci 55(5):1009–1021

    Article  CAS  Google Scholar 

  • Berman Y, Tanklevsky A, Oren Y et al (2000b) Modeling and experimental studies of SO2 absorption in coaxial cylinders with impinging streams: part II. Chem Eng Sci 55(5):1023–1028

    Article  CAS  Google Scholar 

  • Choicharoen Kwanchai, Devahastin Sakamon (2012) Somchart soponronnarit numerical simulation of multiphase transport phenomena during impinging stream drying of a particulate material. Drying Technol 30(12):1227–1237

    Article  CAS  Google Scholar 

  • Dehkordi AM, Kaghazchi T, Sohrabi M (2001a) Application of an air-operated two impinging streams extractor in liquid-liquid extraction and comparison with other contactor types. Can J Chem Eng 79(2):227–235

    Article  CAS  Google Scholar 

  • Dehkordi AM, Kaghazchi T, Sohrabi M (2001b) Application of an air-operated impinging streams contactor in liquid-liquid extraction. Chem Eng Technol 24(2):173–179

    Article  CAS  Google Scholar 

  • Du M, Gong J, Chen W et al (2015) Mathematical model based on dsmc method for particulate drying in a coaxial impinging stream dryer. Drying Technol 33(6):646–658

    Article  CAS  Google Scholar 

  • Gao Z, Han J, Xu Y et al (2013) Particle image velocimetry (PIV) investigation of flow characteristics in confined impinging jet reactors. Ind Eng Chem Res 52(33):11779–11786

    Article  CAS  Google Scholar 

  • Gao Z, Han J, Bao Y, Li Z (2015) Micromixing efficiency in a T-shaped confined impinging jet reactor. Chin J Chem Eng 23:350–355

    Article  CAS  Google Scholar 

  • Hosseinalipour SM, Mujumdar AS (1995) Flow, heat transfer and particle drying characteristics in confined opposing turbulent jets: a numerical study. Drying Technol 13:753–781

    Article  CAS  Google Scholar 

  • Hosseinalipour SM, Mujumdar AS (1997) A model for superheated steam drying of particles in an impinging stream dryer. In: Turner I, Mujumdar AS (eds) Mathematical Modeling and Numerical Techniques in Drying Technology. Marcel Dekker, New York, pp 537–574

    Google Scholar 

  • Huai XL, Peng XF, Wang GX et al (2003) Multi-phase flow and drying characteristics in a semi-circular impinging stream dryer. Int J Heat Mass Transf 46(16):3061–3067

    Article  Google Scholar 

  • Johnson DA (2000) Experimental and numerical examination of confined laminar opposed jets part I Momentum imbalance. Int Commun Heat Mass Transf 27(4):443–454

    Article  Google Scholar 

  • Johnson DA (2000) Experimental and numerical examination of confined laminar opposed jets part II Momentum balancing. Int Commun Heat Mass Transf 27(4):455–463

    Article  Google Scholar 

  • Jung S, Hoath SD, Martin GD et al (2010) Atomization patterns produced by the oblique collision of two Newtonian liquid jets. Phys Fluids. https://doi.org/10.1063/1.3373513

    Article  Google Scholar 

  • Jung S, Hoath SD, Martin GD et al (2011) Experimental study of atomization patterns produced by the oblique collision of two viscoelastic liquid jets. J Nonnewton Fluid Mech 166(5–6):297–306

    Article  CAS  Google Scholar 

  • Khomwachirakul P, Devahastin S, Swasdisevi T et al (2016) Simulation of flow and drying characteristics of high-moisture particles in an impinging stream dryer via CFD-DEM. Drying Technol 34(4):403–419

    Article  CAS  Google Scholar 

  • Krupa K, Nunes MI, Santos RJ et al (2014) Characterization of micromixing in T-jet mixers. Chem Eng Sci 111:48–55

    Article  CAS  Google Scholar 

  • Kudra T, Mujumdar AS (1989) Impingement stream dryers for particles and pastes. Drying Technol 7:219–266

    Article  Google Scholar 

  • Kudra T, Mujumdar AS (2007) Impinging stream dryers. In: Mujumdar AS (ed) Handbook of Industrial Drying, 3rd edn. CRC Press, New York, pp 479–488

    Google Scholar 

  • Li WW, Du KJ, Yu GS et al (2014) Experimental study of flow regimes in three-dimensional confined impinging jets reactors. AIChE J 60(8):3033–3045

    Article  CAS  Google Scholar 

  • Lishun Hu, Xinjun W, Li Xiaoming Yu, Guangsuo WF, Zunhong Yu (2007) The characteristics of liquid-phase methanol synthesis in an impinging stream reactor. Chem Eng Process 46:905–909

    Article  Google Scholar 

  • Liu D, Bu C, Chen X (2013) Development and test of CFD-DEM model for complex geometry: A coupling algorithm for Fluent and DEM. Comput Chem Eng 58:260–268

    Article  CAS  Google Scholar 

  • Metzger L, Kind M (2017) The influence of mixing on fast precipitation processes A coupled 3D CFD-PBE approach using the direct quadrature method of moments (DQMOM). Chem Eng Sci 169:284–298

    Article  CAS  Google Scholar 

  • Guo Tianyu, Ruan Bin, Liu Zhiwei, Jamal Muhammad Ali, Wen Lixiong, Chen Jianfeng (2017) Numerical and experimental investigations of liquid mixing in two-stage micro-impinging stream reactors. Chin J Chem Eng 25:391–400

    Article  CAS  Google Scholar 

  • Powell A (1960) Aerodynamic noise and the plane boundary. Acoust Soc Am 32:982–990

    Article  Google Scholar 

  • Sae-Heng S, Swasdisevi T, Amornkitbamrung M (2011) Investigation of temperature distribution and heat transfer in fluidized bed using a combined CFD-DEM model. Drying Technol 29:697–708

    Article  CAS  Google Scholar 

  • Saien J, Moradi V (2012) Low interfacial tension liquid-liquid extraction with impinging-jets contacting method: Influencing parameters and relationship. J Ind Eng Chem 18(4):1293–1300

    Article  CAS  Google Scholar 

  • Sandell DJ, Macosko CW, Ranz WE (1985) Visualization technique for studying impingement mixing at representative Reynolds numbers. Polym Process Eng 3(1–2):57–70

    Google Scholar 

  • Santos RJ, Erkoç E, Dias MM et al (2009) Dynamic behavior of the flow field in a RIM machine mixing chamber. AICh E J 55(6):1338–1351

    Article  CAS  Google Scholar 

  • Tamir A (1994) Impinging-Stream Reactors: Fundamentals and Applications. Elsevier, Amsterdam

    Google Scholar 

  • Wu C, Cheng Y, Ding Y, Jin Y (2010) CFD-DEM simulation of gas-solid reacting flows in fluid catalytic cracking (FCC) process. Chem Eng Sci 65:542–549

    Article  CAS  Google Scholar 

  • Xueqing LIU, Luyi LU, Gao Wei et al (2018) Simulations of an asymmetric gas-solid two-phase impinging stream reactor. Numer Heat Trans Part A 74(2):1032–1051

    Article  Google Scholar 

  • Xueqing LIU, Luyi LU, Gao Wei et al (2019) Study on single particle residence time of impulse, symmetric and asymmetric coaxial impinging streams. Powder Technol 342:118–130

    Article  Google Scholar 

  • Zhang J, Liu Y, Luo Y (2016) The turbulent behavior of novel free triple-impinging jets with large jet spacing by means of particle image velocimetry. Chin J Chem Eng 24(6):757–766

    Article  Google Scholar 

  • Zhong W, Xiong Y, Yuan Z, DEM Zhang M (2006) simulation of gas-solid flow behaviors in spout-fluid bed. Chem Eng Sci 61:1571–1584

    Article  CAS  Google Scholar 

  • Zhuang Y-Q, Chen X-M, Luo Z-H, Xiao J (2014) CFD–DEM modeling of gas–solid flow and catalytic MTO reaction in a fluidized bed reactor. Comput Chem Eng 60:1–16

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by science and technology project of Power Construction Corporation of China Ltd: Project No. DJ-ZDZX-2018-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueqing Liu.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work; there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled, “Study of Drying Characteristics in an Asymmetric Impinging Stream Reactor”.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, S., Liu, X. Study of the drying characteristics in an asymmetric impinging stream reactor. Chem. Pap. 75, 4355–4370 (2021). https://doi.org/10.1007/s11696-021-01681-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-021-01681-0

Keywords

Navigation