Abdelnabi R, de Morais ATS, Leyssen P, Imbert I, Beaucourt S, Blanc H, Froeyen M, Vignuzzi M, Canard B, Neyts J, Delang L (2017) Understanding the mechanism of the broad-spectrum antiviral activity of favipiravir (T-705): key role of the F1 motif of the viral polymerase. J Virol 91:e00487-17. https://doi.org/10.1128/JVI.00487-17
CAS
Article
PubMed
PubMed Central
Google Scholar
Antonov L (2020) Favipiravir tautomerism: a theoretical insight. Theor Chem Acc 139:145. https://doi.org/10.1007/s00214-020-02656-2
CAS
Article
PubMed
PubMed Central
Google Scholar
Baranovich T, Wong S-S, Armstrong J, Marjuki H, Webby RJ, Webster RG, Govorkova EA (2013) T-705 (favipiravir) induces lethal mutagenesis in influenza A H1N1 viruses in vitro. J Virol 87:3741–3751. https://doi.org/10.1128/JVI.02346-12
CAS
Article
PubMed
PubMed Central
Google Scholar
Cai Q, Yang M, Liu D, Chen J, Shu D, Xia J, Liao X, Gu Y, Cai Q, Yang Y, Shen C, Li X, Peng L, Huang D, Zhang J, Zhang S, Wang F, Liu J, Chen L, Chen S, Wang Z, Zhang Z, Cao R, Zhong W, Liu Y, Liu L (2020) Experimental treatment with favipiravir for COVID-19: an open-label control study. Engineering 6:1192–1198. https://doi.org/10.1016/j.eng.2020.03.007
CAS
Article
PubMed
Google Scholar
Choy K-T, Wong AY-L, Kaewpreedee P, Sia SF, Chen D, Hui KPY, Chu DKW, Chan MCW, Cheung PP-H, Huang X, Peiris M, Yen H-L (2020) Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res 178:104786. https://doi.org/10.1016/j.antiviral.2020.104786
CAS
Article
PubMed
PubMed Central
Google Scholar
Chu DKW, Pan Y, Cheng SMS, Hui KPY, Krishnan P, Liu Y, Ng DYM, Wan CKC, Yang P, Wang Q, Peiris M, Poon LLM (2020) Molecular diagnosis of a novel coronavirus (2019-nCoV) causing an outbreak of pneumonia. Clin Chem 66:549–555. https://doi.org/10.1093/clinchem/hvaa029
Article
PubMed
PubMed Central
Google Scholar
COVID-19 Docking Server Web-based Software, COVID-19 Docking Server (homepage on the internet), Shan Chang Lab., Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China, 2020; available from COVID-19 Docking Server on the web (homepage: http://ncov.schanglab.org.cn); Results were obtained through using the interactive docking tool in COVID-19 Docking Server (Copyright© 2018-2023, Shan Chang; Version 2020) on this website (accessed and cited in 2020, 19–28 May)
COVID-19 Map (2020), available from Johns Hopkins Coronavirus Research Center. https://coronavirus.jhu.edu/map.html. Accessed in 30 December, 2020
Dabbagh-Bazarbachi H, Clergeaud G, Quesada IM, Ortiz M, O’Sullivan CK, Fernández-Larrea JB (2014) Zinc ionophore activity of quercetin and epigallocatechin-gallate: from Hepa 1–6 cells to a liposome model. J Agric Food Chem 62:8085–8093. https://doi.org/10.1021/jf5014633
CAS
Article
PubMed
Google Scholar
Derwand R, Scholz M (2020) Does zinc supplementation enhance the clinical efficacy of chloroquine/hydroxychloroquine to win today’s battle against COVID-19? Med Hypotheses 142:109815. https://doi.org/10.1016/j.mehy.2020.109815
CAS
Article
PubMed
PubMed Central
Google Scholar
Dong L, Hu S, Gao J (2020) Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discoveries Ther 14:58–60. https://doi.org/10.5582/ddt.2020.01012
CAS
Article
Google Scholar
Driouich JS, Cochin M, Lingas G, Moureau G, Touret F, Petit PR, Piorkowski G, Barthélémy K, Laprie C, Coutard B, Guedj J, de Lamballerie X, Solas C, Nougairède A (2021) Favipiravir antiviral efficacy against SARS-CoV-2 in a hamster model. Nat Commun 12:1735. https://doi.org/10.1038/s41467-021-21992-w
CAS
Article
PubMed
PubMed Central
Google Scholar
Du Y-X, Chen X-P (2020) Favipiravir: pharmacokinetics and concerns about clinical trials for 2019-nCoV infection. Clin Pharmacol Ther 108:242–247. https://doi.org/10.1002/cpt.1844
CAS
Article
PubMed
Google Scholar
Elfiky AA (2020) Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sci 248:117477. https://doi.org/10.1016/j.lfs.2020.117477
CAS
Article
PubMed
PubMed Central
Google Scholar
Ertl P, Rohde B, Selzer P (2000) Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J Med Chem 43:3714–3717. https://doi.org/10.1021/jm000942e
CAS
Article
PubMed
Google Scholar
Filimonov DA, Lagunin AA, Gloriozova TA, Rudik AV, Druzhilovskii DS, Pogodin PV, Poroikov VV (2014) Prediction of the biological activity spectra of organic compounds using the Pass Online web resource. Chem Heterocycl Compd 50:444–457. https://doi.org/10.1007/s10593-014-1496-1
CAS
Article
Google Scholar
Furuta Y, Takahashi K, Shiraki K, Sakamoto K, Smee DF, Barnard DL, Gowen BB, Julander JG, Morrey JD (2009) T-705 (favipiravir) and related compounds: novel broad-spectrum inhibitors of RNA viral infections. Antiviral Res 82:95–102. https://doi.org/10.1016/j.antiviral.2009.02.198
CAS
Article
PubMed
PubMed Central
Google Scholar
Furuta Y, Gowen BB, Takahashi K, Shiraki K, Smee DF, Barnard DL (2013) Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antiviral Res 100:446–454. https://doi.org/10.1016/j.antiviral.2013.09.015
CAS
Article
PubMed
Google Scholar
Ghose AK, Viswanadhan VN, Wendoloski JJ (1999) A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J Comb Chem 1:55–68. https://doi.org/10.1021/cc9800071
CAS
Article
PubMed
Google Scholar
Guo Q, Xu M, Guo S, Zhu F, Xie Y, Shen J (2019) The complete synthesis of favipiravir from 2-aminopyrazine. Chem Pap 73:1043–1051. https://doi.org/10.1007/s11696-018-0654-9
CAS
Article
Google Scholar
Hecel A, Ostrowska M, Stokowa-Sołtys K, Wątły J, Dudek D, Miller A, Potocki S, Matera-Witkiewicz A, Dominguez-Martin A, Kozłowski H, Rowińska-Żyrek M (2020) Zinc(II)—The overlooked éminence grise of chloroquine’s fight against COVID-19? Pharmaceuticals 13:228. https://doi.org/10.3390/ph13090228
CAS
Article
PubMed Central
Google Scholar
Hui DS, Azhar EI, Madani TA, Ntoumi F, Kock R, Dar O, Ippolito G, Mchugh TD, Memish ZA, Drosten C, Zumla A, Petersen E (2020) The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health—the latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis 91:264–266. https://doi.org/10.1016/j.ijid.2020.01.009
CAS
Article
PubMed
PubMed Central
Google Scholar
Ishida T (2019) Review on the role of Zn2+ ions in viral pathogenesis and the effect of Zn2+ ions for host cell-virus growth inhibition. Am J Biomed Sci Res 2:28–37. https://doi.org/10.34297/AJBSR.2019.02.000566
Article
Google Scholar
Jena NR (2020) Role of different tautomers in the base-pairing abilities of some of the vital antiviral drugs used against COVID-19. Phys Chem Chem Phys 22:28115–28122. https://doi.org/10.1039/d0cp05297c
CAS
Article
PubMed
Google Scholar
Jiang S, Du L, Shi Z (2020) An emerging coronavirus causing pneumonia outbreak in Wuhan, China: calling for developing therapeutic and prophylactic strategies. Emerg Microbes Infect 9:275–277. https://doi.org/10.1080/22221751.2020.1723441
CAS
Article
PubMed
PubMed Central
Google Scholar
Jin Z, Smith LK, Rajwanshi VK, Kim B, Deval J (2013) The ambiguous base-pairing and high substrate efficiency of T-705 (favipiravir) ribofuranosyl 5′-triphosphate towards influenza A virus polymerase. PLoS ONE 8:e68347. https://doi.org/10.1371/journal.pone.0068347
CAS
Article
PubMed
PubMed Central
Google Scholar
Kirchdoerfer RN, Ward AB (2019) Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nat Commun 10:2342. https://doi.org/10.1038/s41467-019-10280-3
CAS
Article
PubMed
PubMed Central
Google Scholar
Kumar N, Awasthi A, Kumari A, Sood D, Jain P, Singh T, Sharma N, Grover A, Chandra R (2020) Antitussive noscapine and antiviral drug conjugates as arsenal against COVID-19: a comprehensive chemoinformatics analysis. J Biomol Struct Dyn. In Press. https://doi.org/10.1080/07391102.2020.1808072
Kumar N, Sood D, Singh S, Kumar S, Chandra R (2021) High bio-recognizing aptamer designing and optimization against human herpes virus-5. Eur J Pharm Sci 156:105572. https://doi.org/10.1016/j.ejps.2020.105572
CAS
Article
PubMed
Google Scholar
Łagocka R, Dziedziejko V, Kłos P, Pawlik A (2021) Favipiravir in therapy of viral infections. J Clin Med 10:273. https://doi.org/10.3390/jcm10020273
CAS
Article
PubMed Central
Google Scholar
Li J-Y, You Z, Wang Q, Zhou Z-J, Qiu Y, Luo R, Ge X-Y (2020) The epidemic of 2019-novel-coronavirus (2019-nCoV) pneumonia and insights for emerging infectious diseases in the future. Microbes Infect 22:80–85. https://doi.org/10.1016/j.micinf.2020.02.002
CAS
Article
PubMed
PubMed Central
Google Scholar
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Delivery Rev 23:3–25. https://doi.org/10.1016/S0169-409X(96)00423-1
CAS
Article
Google Scholar
Miniyar PB, Murumkar PR, Patil PS, Barmade MA, Bothara KG (2013) Unequivocal role of pyrazine ring in medicinally important compounds: a review. Mini-Rev Med Chem 13:1607–1625. https://doi.org/10.2174/1389557511313110007
CAS
Article
PubMed
Google Scholar
Molinspiration Web-based Software, Molinspiration Cheminformatics (homepage on the internet), Nova ulica, SK-900 26 Slovensky Grob, Slovak Republic, 2020; available from Molinspiration Cheminformatics on the web (homepage: http://www.molinspiration.com); Estimations were calculated through using Molinspiration Property Engine (Version 2018.10; Molinspiration Calculation of Molecular Properties) on this Website (accessed and cited in 2020, 11–22 May)
Naydenova K, Muir KW, Wu LF, Zhang Z, Coscia F, Peet MJ, Castro-Hartmann P, Qian P, Sader K, Dent K, Kimanius D, Sutherland JD, Löwe J, Barford D, Russo CJ (2021) Structure of the SARS-CoV-2 RNA-dependent RNA polymerase in the presence of favipiravir-RTP. Proc Natl Acad Sci U S A 118:e2021946118. https://doi.org/10.1073/pnas.2021946118
CAS
Article
PubMed
PubMed Central
Google Scholar
PASS Online Web-based Software, Way2Drug Predictive Services (homepage on the internet), Department for Bioinformatics, Laboratory for Structure-Function Based Drug Design, Institute of Biomedical Chemistry (IBMC), Moscow 119121, Pogodinskaya Str., 10, Russia, 2020; available from PharmaExpert or Way2Drug Predictive Services on the web (homepage: http://www.pharmaexpert.ru or http://www.way2drug.com); Results were obtained through using Predict New Compound tool in PASS software (homepage: http://www.pharmaexpert.ru/passonline or http://www.way2drug.com/PASSOnline; PharmaExpert.ru © or Way2Drug.com ©, 2011-2020, Version 2.0; PASS Online Prediction of Pharmacological Activities) on both websites (accessed and cited in 2020, 20–30 May)
Picarazzi F, Vicenti I, Saladini F, Zazzi M, Mori M (2020) Targeting the RdRp of emerging RNA viruses: the structure-based drug design challenge. Molecules 25:5695. https://doi.org/10.3390/molecules25235695
CAS
Article
PubMed Central
Google Scholar
Sada M, Saraya T, Ishii H, Okayama K, Hayashi Y, Tsugawa T, Nishina A, Murakami K, Kuroda M, Ryo A, Kimura H (2020) Detailed molecular interactions of favipiravir with SARS-CoV-2, SARS-CoV, MERS-CoV, and influenza virus polymerases in silico. Microorganisms 8:1610. https://doi.org/10.3390/microorganisms8101610
CAS
Article
PubMed Central
Google Scholar
Shannon A, Le NT-T, Selisko B, Eydoux C, Alvarez K, Guillemot J-C, Decroly E, Peersen O, Ferron F, Canard B (2020) Remdesivir and SARS-CoV-2: structural requirements at both nsp12 RdRp and nsp14 exonuclease active-sites. Antiviral Res 178:104793. https://doi.org/10.1016/j.antiviral.2020.104793
CAS
Article
PubMed
PubMed Central
Google Scholar
Shiraki K, Daikoku T (2020) Favipiravir, an anti-influenza drug against life-threatening RNA virus infections. Pharmacol Ther 209:107512. https://doi.org/10.1016/j.pharmthera.2020.107512
CAS
Article
PubMed
PubMed Central
Google Scholar
Smee DF, Hurst BL, Egawa H, Takahashi K, Kadota T, Furuta Y (2009) Intracellular metabolism of favipiravir (T-705) in uninfected and influenza A (H5N1) virus-infected cells. J Antimicrob Chemother 64:741–746. https://doi.org/10.1093/jac/dkp274
CAS
Article
PubMed
PubMed Central
Google Scholar
te Velthuis AJW, van den Worm SHE, Sims AC, Baric RS, Snijder EJ, van Hemert MJ (2010) Zn2+ inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog 6:e1001176. https://doi.org/10.1371/journal.ppat.1001176
CAS
Article
Google Scholar
Veber DF, Johnson SR, Cheng H-Y, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2623. https://doi.org/10.1021/jm020017n
CAS
Article
PubMed
Google Scholar
Venkataraman S, Prasad BVLS, Selvarajan R (2018) RNA dependent RNA polymerases: insights from structure, function and evolution. Viruses 10:76. https://doi.org/10.3390/v10020076
CAS
Article
Google Scholar
Wang X, Cao R, Zhang H, Liu J, Xu M, Hu H, Li Y, Zhao L, Li W, Sun X, Yang X, Shi Z, Deng F, Hu Z, Zhong W, Wang M (2020a) The antiinfluenza virus drug, arbidol is an efficient inhibitor of SARS-CoV-2 in vitro. Cell Discovery 6:28. https://doi.org/10.1038/s41421-020-0169-8
CAS
Article
PubMed
PubMed Central
Google Scholar
Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W, Xiao G (2020b) Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 30:269–271. https://doi.org/10.1038/s41422-020-0282-0
CAS
Article
PubMed
PubMed Central
Google Scholar
Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, Wang Q, Xu Y, Li M, Li X, Zheng M, Chen L, Li H (2020) Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B 10:766–788. https://doi.org/10.1016/j.apsb.2020.02.008
CAS
Article
PubMed
PubMed Central
Google Scholar
Xue J, Moyer A, Peng B, Wu J, Hannafon BN, Ding W-Q (2014) Chloroquine is a zinc ionophore. PLoS ONE 9:e109180. https://doi.org/10.1371/journal.pone.0109180
CAS
Article
PubMed
PubMed Central
Google Scholar
Yehye WA, Abdul Rahman N, A Alhadi A, Khaledi H, Ng SW, Ariffin A (2012) Butylated hydroxytoluene analogs: synthesis and evaluation of their multipotent antioxidant activities. Molecules 17:7645–7665. https://doi.org/10.3390/molecules17077645
CAS
Article
PubMed
PubMed Central
Google Scholar
Yin W, Mao C, Luan X, Shen D-D, Shen Q, Su H, Wang X, Zhou F, Zhao W, Gao M, Chang S, Xie Y-C, Tian G, Jiang H-W, Tao S-C, Shen J, Jiang Y, Jiang H, Xu Y, Zhang S, Zhang Y, Xu HE (2020) Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science 368:1499–1504. https://doi.org/10.1126/science.abc1560
CAS
Article
PubMed
PubMed Central
Google Scholar
Yoon J-J, Toots M, Lee S, Lee M-E, Ludeke B, Luczo JM, Ganti K, Cox RM, Sticher ZM, Edpuganti V, Mitchell DG, Lockwood MA, Kolykhalov AA, Greninger AL, Moore ML, Painter GR, Lowen AC, Tompkins SM, Fearns R, Natchus MG, Plemper RK (2018) Orally efficacious broad-spectrum ribonucleoside analog inhibitor of influenza and respiratory syncytial viruses. Antimicrob Agents Chemother 62:e00766-18. https://doi.org/10.1128/AAC.00766-18
Article
PubMed
PubMed Central
Google Scholar
Zhang L, Lin D, Kusov Y, Nian Y, Ma Q, Wang J, von Brunn A, Leyssen P, Lanko K, Neyts J, de Wilde A, Snijder EJ, Liu H, Hilgenfeld R (2020) α-Ketoamides as broad-spectrum inhibitors of coronavirus and enterovirus replication: Structure-based design, synthesis, and activity assessment. J Med Chem 63:4562–4578. https://doi.org/10.1021/acs.jmedchem.9b01828
CAS
Article
PubMed
Google Scholar
Zhang Y, Tang LV (2021) Overview of targets and potential drugs of SARS-CoV-2 according to the viral replication. J Proteome Res 20:49–59. https://doi.org/10.1021/acs.jproteome.0c00526
CAS
Article
PubMed
Google Scholar