Skip to main content
Log in

The role of chemosensory relationships to improve raw materials’ selection for Premium cigar manufacture

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The selection of lots of raw materials to be used in tobacco products’ blends, especially for Premium cigars, holds a high degree of subjectivity. To overcome this, it is proposed a methodology to choose, among the available lots, only those which comply with precise quality specifications. As an integral part of the approach, this work revealed the constituents and parameters that should be analyzed in the raw materials because they are important to predict cigar strength. It was also defined NIR spectroscopic models that are good enough to analyze the important properties on products and raw materials. Two batches of 27 products (accumulating 3780  cigars) and dust samples (322 in total) were evaluated. The scores of strength were regressed on 33 variables of the cigars and the smoke, as well as on 1050 NIR reflectance measurements. The reference concentrations of the significant properties were regressed on the reflectance. Calibration and validation performances were estimated for the chemosensory and NIR spectroscopic models through partial least squares (PLS 1) and support vector regression (SVR) algorithms. The ratio nicotine/tar and the relative nicotine transfer in the smoke, together with the concentration within the products of total alkaloids as nicotine, total nitrogen, and total ash, were the significant characteristics. The prediction performance of the new chemometrics models through SVR demonstrated their usefulness for this industrial context. This work contributed to define, for the first time, a methodology for choosing the lots of raw materials and managing the optimal aging time given to processed leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

a:

Intercept of the regression model

b:

Slope of the regression model

C:

Hyperparameter of the support vector regression Model, known as regularization constant

n :

Number of samples or objects

NIR spectroscopy:

Near-infrared spectroscopy

PCA:

Principal component analysis

PLS 1:

Partial least square for predicting one variable

p-value:

Coefficient used to decide in a hypothesis testing.

r :

Pearson correlation coefficient of a simple linear regression

r 2 :

Coefficient of determination of a simple linear regression

R 2 :

Coefficient of determination of the multivariate calibration model.

SECV:

Standard error of cross-validation

SEL:

Standard error of laboratory

SEP:

Standard error of prediction

SVR:

Support vector regression

u (x i):

Uncertainty associated with the ith value from the reference method

u (y i):

Uncertainty associated with the ith value from the NIR spectroscopy

W i :

Weights of the ith pair (x;y)

x i :

Observed value of the independent variable in the ith sample of validation set

y i :

Observed value of the dependent variable in the ith sample of the validation set

ε :

Hyperparameter of the support vector regression, known as loss function

σ :

Hyperparameter of the support vector regression, known as Kernel scale

i :

Ith value

References

  • Azcárate SM, Pinto L, Goicoechea HE (2020) Applications of mixture experiments for response surface methodology implementation in analytical methods development. J Chemometrics. https://doi.org/10.1002/cem.3246

    Article  Google Scholar 

  • Balabin RM, Lomakina EK (2011) Support vector machine (SVR/LS-SVR)—an alternative to neural networks (ANN) for analytical chemistry? Comparison of non-linear methods on near infrared (NIR) spectroscopy data. Analyst 136:1703–1712

    Article  CAS  Google Scholar 

  • Balabin RM, Smirnov V (2012) Interpolation and extrapolation problems of multivariate regression in analytical chemistry: benchmarking the robustness of near-infrared (NIR) spectroscopy data. Analyst 137:1604–1610

    Article  CAS  Google Scholar 

  • Bokelman GH, Ryan WS (1985) Analyses of bright and burley tobacco laminae and stems. Beiträge zur Tabakforschung Int/Contribut Tobacco Res 13(1):29–36

    Article  CAS  Google Scholar 

  • Borges-Miranda A, Morejón R, Izquierdo A, Monzón L, Ortega E, Rodés R (2012) Nitrogen fertilization for optimizing the quality and yield of shade grown Cuban cigar tobacco: required nitrogen amounts, application schedules, adequate leaf nitrogen levels, and early season diagnostic tests. Beitr Tabakforsch Int 25(1):336–349

    CAS  Google Scholar 

  • Borges-Miranda A, Marquez-Leyva I, Jiménez-Chacón J, Pérez-Martínez C, Alvarez-Prieto M (2015a) Overcoming constraints of the control charting approach for measurement uncertainty assessments. Accred Qual Assur 20:473–482. https://doi.org/10.1007/s00769-015-1161-0

    Article  Google Scholar 

  • Borges-Miranda A, Márquez-Leyva I, González-Díaz M et al. (2015b) Tamaño muestral mínimo para estimar la concentración de analitos relevantes en las materias primas utilizadas para elaborar los Habanos. 16(1): 3–9

  • Borges-Miranda A, Pérez-Martínez C, Jiménez-Chacón J, Álvarez-Prieto M (2019) Near infrared analysis of total alkaloids as nicotine, total nitrogen and total ash in Cuban cigar tobacco. J Near-Infrared Spectrosc 27(2):123–133. https://doi.org/10.1177/0967033518825345

    Article  CAS  Google Scholar 

  • Callicutt CH, Cox RH, Hsu F, Kinser RD, Laffoon SW, Lee PN, Podraza KF, Sanders EB, Seeman JI (2006) The role of ammonia in the transfer of nicotine from tobacco to mainstream smoke. Regul Tox Pharm 46:1–17

    Article  CAS  Google Scholar 

  • Chanda S, Hazarika AK, Choudhury N, Islam SA, Manna R, Sabhapondit S, Tudu B, Bandyopadhyay R (2019) Support vector machine regression on selected wavelength regions for quantitative analysis of caffeine in tea leaves by near infrared spectroscopy. J Chemometrics. https://doi.org/10.1002/cem.3172

    Article  Google Scholar 

  • Chen C, Pankow JF (2009) Gas/Particle partitioning of two acid-base active compounds in mainstream tobacco smoke: nicotine and ammonia. J Agric Food Chem 57:2678–2690

    Article  CAS  Google Scholar 

  • Chen D, Wang F, Shao X, Su Q (2003) Elimination of interference information by a new hybrid algorithm for quantitative calibration of near-infrared spectra. Analyst 128:1200–1203

    Article  CAS  Google Scholar 

  • Chen D, Hu B, Shao X, Su Q (2004) Variable selection by modified IPW (iterative prediction weighting)-PLS (partial least squares) in continuous wavelet regression models. Analyst 129:664–669

    Article  CAS  Google Scholar 

  • Chen D, Hu B, Shao X, Su Q (2005) A new hybrid strategy for constructing a robust calibration model for near-infrared spectra analysis. Anal Bioanal Chem 381:795–805

    Article  CAS  Google Scholar 

  • Ciambrone, K (2017) Building blocks for regulated tobacco products and the challenges with cigars. In: Abstracts of the CORESTA joint study group meeting. Smoke Science and Product technology. Kitzbühel, Austria, October 10, STW 04, p. 69

  • Comparetto F (2017) Case Study: How cigar sense helps retailers delight their customers, http://www.cigarsense.com/how-cigar-sense-helps-retailers-delight-their-customers/. Accessed Jan 2021

  • Consejo Regulador de la Denominación de Origen Protegida (D.O.P.) Habanos y otras Tabacaleras Cubanas, Brutton M, Chase S (2012) El Mundo del Habano. First Edition. Ed. Instituto de Investigaciones del Tabaco

  • CORESTA guide No. 13 (2012) Guidance for Sampling the Tobacco Leaf Supply Chain. Taskforce tobacco supply chain sampling. https://www.coresta.org/guidance-sampling-tobacco-leaf-supply-chain-29216.html. Accessed Jan 2021

  • CORESTA guide No. 21 (2017) Best Practices and Crop Protection in Cigar Dark Air-Cured Tobacco. December, https://www.coresta.org/best-practices-and-crop-protection-cigar-dark-air-cured-tobacco-30985.html. Accessed Jan 2021

  • CORESTA Newsletter No. 50, (2018). https://www.coresta.org/sites/default/files/newsletter/Newsletter50-April18.pdf. Accessed Jan 2021

  • Cornell JA (2011) A primer on experiments with mixtures. John Wiley & Sons, Inc., New Jersey

    Book  Google Scholar 

  • CRM 69 (2017) Determination of pH of tobacco and tobacco products. https://www.coresta.org/sites/default/files/technical_documents/main/CRM_69-July2017.pdf Second version. Last Accessed 24 Mar 2021

  • CRM 46 (2018) Atmosphere for conditioning and testing cigars of all sizes and shapes https://www.coresta.org/atmosphere-conditioning-and-testing-cigars-all-sizes-and-shapes-29171.html. Accessed Jan 2021

  • CRM 64 (2018) Routine analytical cigar-smoking machine, specifications, definitions and standard conditions https://www.coresta.org/routine-analytical-cigar-smoking-machine-specifications-definitions-and-standard-conditions-29187. Accessed Jan 2021

  • CRM 65 (2018) Determination of total and nicotine-free dry particulate matter using a routine analytical smoking machine–determination of total particulate matter and preparation for water and nicotine measurements. Fourth edition https://www.coresta.org/determination-total-and-nicotine-free-dry-particulate-matter-using-routine-analytical-cigar-smoking. Accessed Jan 2021

  • CRM 66 (2019) Determination of nicotine in the mainstream smoke of cigars by gas chromatographic analysis. https://www.coresta.org/determination-nicotine-mainstream-smoke-cigars-gas-chromatographic-analysis-29189.html. Accessed Jan 2021

  • CRM 67 Determination of water in the mainstream smoke of cigars by gas chromatographic analysis (2019). https://www.coresta.org/determination-water-mainstream-smoke-cigars-gas-chromatographic-analysis-29190.html. Accessed Jan 2021

  • CRM 68 (2019) Determination of carbon monoxide in the mainstream smoke of cigars by non-dispersive infrared analysis. https://www.coresta.org/determination-carbon-monoxide-mainstream-smoke-cigars-non-dispersive-infrared-analysis-29191.html. Accessed Jan 2021

  • Crumpler LA, Zhang W, and Ma Y (2014) Routine Analytical Chemistry Sub-Group Technical Report. 2014 Collaborative study comparing CRM No 35 for the determination of total alkaloids (as nicotine) in tobacco by continuous flow analysis to a new method with safer chemistry. https://www.coresta.org/sites/default/files/technical_documents/main/RAC-052-1-CTR_SaferChemistry-CollStudy2014_March2017.pdf. Accessed Jan 2021

  • Del Castillo N (1987) Obtención de información de las propiedades organolépticas del tabaco cubano para puros con ayuda de métodos instrumentales. Tesis de doctorado en Ciencias Técnicas. Instituto Politécnico de Krasnodar. URSS, 243 pp

  • Del Castillo N, López JJ (1992) Metodología para evaluar la calidad del tabaco Negro. Instructivo técnico. MINAG. Instituto de Investigaciones del Tabaco

  • Del Castillo N, López JJ, Betancourt G (1992) Influencia de la composición química en la calidad organoléptica del tabaco. Cuba Tabaco, Ciencia y Técnica 1(1): 24–28

  • Del Castillo N, López JJ, Betancourt G, Valladares R, García G, and Marín L (2010) Elaboración de tabacos torcidos para la exportación. Manual Técnico. 1st edition. Ed. Instituto de Investigaciones del Tabaco. San Antonio de los Baños

  • Dixon M, Kochhar N, Prasad K, Shepperd J, Warburton DM (2003) The influence of changing nicotine to tar ratios on human puffing behavior and perceived sensory response. Psycopharmacology 170:434–442

    Article  CAS  Google Scholar 

  • Draper NR, Smith H (1987) Applied regression analysis, 2nd edn. Wiley, Hoboken

    Google Scholar 

  • Egli H (2008) Kjeldahl Guide. BUCHI Labortechnik AG, CH-9230 Flawil, Switzerland

  • Esbensen KH, Guyot D, Westad F, and Hoummøler LP (2003) Multivariate data analysis in practice. An introduction to multivariate data analysis and experimental design. 5th Ed. CAMO Process AS, Oslo

  • Eskildsen CE, van der Berg F, Engelsen SB (2017) Vibrational spectroscopy in food processing. In: Lindon JC, GE Tranter and DW Koppenaat (eds.) The Encyclopedia of Spectroscopy and Spectrometry, Oxford Academic Press, 3rd edition, vol 4, p 582–589

  • Espino E (2019) The Habano. From seed to cigar in 539 steps. Cigars City SL. 1st edn. Madrid

  • Espino E, Uriarte BE, Cordero PL, Rodríguez N, Izquierdo A, Blanco LE, Hernández JM, Quintana G, Benitez O, Ibizate J, Díaz M (2012) Instructivo técnico para el cultivo del tabaco en Cuba. Ed. Instituto de Investigaciones del Tabaco. San Antonio de los Baños

  • Fernández JC, Roges LY, Hernández FR, Guardiola JM, Cuervo M, Suárez C (2004) Instructivo técnico para el acopio y beneficio del tabaco negro al sol ensartado. Zonas tabacaleras de Vuelta Abajo, Central (Remedios) y Oriental (Vuelta Arriba). Ed. Agrinfor, La Habana, 64 pp

  • Franke JE, Bennet BN, Davis RE, Thomsen HV, Johnston KS (2001) Determination of nicotine in tobacco: collaborative study. Beiträge zur Tabakforschung Int/Contributions Tobacco Res 19(5):259–265

    Google Scholar 

  • Fu Z, Zhou S, Xia L, Mao Y, Zhu L, Zhang C, Xu W, Cheng Y (2020) Juncus effusus fiber-based cellulose cigarette filter with 3D hierarchically porous structure for removal of PAHs from mainstream smoke. Carbohyd Polym 241:116308

    Article  CAS  Google Scholar 

  • Hair JF, Black WC, Babin B, Anderson RE (2018) Multivariate data analisis, 8th edn., Cengage India

  • Hartely, MD (2017) Cigar tobacco and its required quality. In: Abstracts of the CORESTA joint study group meeting. Smoke Science and Product technology. Kitzbühel, Austria, October 10, STW 03, p. 68

  • Hasan F, Khachatryan L, Lomnicki S (2020) Comparative studies of environmentally persistent free radicals on total particulate matter collected from electronic and tobacco cigarettes. Environ Sci Technol 54:5710–5718. https://doi.org/10.1021/acs.est.0c00351

    Article  CAS  PubMed  Google Scholar 

  • Huo J, Ma Y, Li H, Lu C, Li C, Duan K (2020) Mahalanobis distance based similarity regression learning of NIRS for quality assurance of tobacco product with different variable selection methods. Spectrochim Acta Part A Mol Biomol Spectrosc

  • Ioannidis M (1986) Inheritance of the alkalinity number of water soluble ash in Greek tobacco. Bull. Spec. CORESTA Symposium, Taormina, p. 59, A22, ISSN.0525-6240

  • ISO 3696 (1987) Water for analytical laboratory use- Specifications and tests methods

  • ISO 3402 (1999) Tobacco and tobacco products—atmosphere for conditioning and testing

  • ISO 15152 (2003) Tobacco—determination of the content of total alkaloids as nicotine—continuous-flow analysis method

  • ISO 13299 (2016) Sensory analysis—methodology—general guidance for establishing a sensory profile

  • Jianqiang Z, Yang P, Weijuan L, Yanmei Y, Tianjun Y, Ying H, Li C (2019) Rapid and automatic classification of tobacco leaves using a hand-held DLP-based NIR spectroscopy device. J Braz Chem Soc 30(9):1927–1932. https://doi.org/10.21577/0103-5053.20190105

    Article  CAS  Google Scholar 

  • Jingfeng J, Mingyue Z, Quan L (2007). Rapid analysis of multiple components in tobacco using the antaris II FT-NIR analyzer. Application note 51370. Thermofisher scientific Inc

  • Jo M, Hernández R, Butios, S, Armas I, Cruz R, León LE (2012) Curado del tabaco. http://www.monografias.com/trabajos30/curado-tabaco/curado-tabaco.shtml#fisiol. Accessed Jan 2021

  • Kalra YP (1998) Handbook of reference procedures for plant analysis. Soil and Plant Analysis Council, Inc., CRC Press, Boca Raton

  • Kaiser S, Dias JC, Ardila JA et al (2018) High-throughput simultaneous quantitation of multi-analytes in tobacco by flow injection coupled to high-resolution mass spectrometry. Talanta 190(1):363–374

    Article  CAS  Google Scholar 

  • Kaiser S, Soares FLF, Ardila JA et al (2018) Innovative approaches for estimating the levels of tobacco-specific nitrosamines in cured tobacco samples. Chem Res Toxicol 31(9):964–973

    Article  CAS  Google Scholar 

  • Klus H, Boenke B, Müller L (2016) Cigarette mainstream smoke: the evolution of methods and devices for generation, exposure and collection. Beitr Tabakforsch Int 27(4):137–249

    Google Scholar 

  • Lei X, Goel R, Sun D, Bhangu G, Bitzer ZT, Trushin N, Ma L, Richie JP Jr, Xiu G, Muscat JE (2020) Free radical and nicotine yields in mainstream smoke of Chinese marketed cigarettes: variation with smoking regimens and cigarette brands. Chem Res Toxicol 33(7):1791–1797. https://doi.org/10.1021/acs.chemrestox.0c00041

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Cai W, Shao X (2009) A weighted multiscale regression for multivariate calibration of near-infrared spectra. Analyst 134:261–263

    Article  CAS  Google Scholar 

  • Massart DL, Vandeginste BDM, Buydens LMC, de Jong S, Lewi PJ, Smeyers Verbeke J (1998) Handbook of chemometrics and qualimetrics. In: Vandeginste BDM, Rutan SC (eds) Data handling in science and technology, vol 20. Elsevier Science BV, Amsterdam

    Google Scholar 

  • MATLAB-fitrsvm, Fit a support vector machine regression model. https://www.mathworks.com/help/stats/fitrsvm.html MathWorks-Makers of MATLAB and Simulink. Accessed Jan 2021

  • Morán Gómez YM, Cuervo Fernández MM, Fleitas Gutiérrez D et al (2013) Géneros bacterianos dominantes en los estratos foliares del tabaco curado para capas. Influencia de la nicotina y el pH sobre su densidad poblacional. Cultivos Tropicales 34(3):17–24

    Google Scholar 

  • Næs T, Brockhoff PB, and Tomic O (2010) Statistics for sensory and consumer science. Ed. John Willey & Sons Ltd, New Jersey

  • NC 591 (2013) Tabaco Negro beneficiado—Especificaciones. ONN, Cuba

    Google Scholar 

  • Ortez I (2020) Blending, Cigar Sense Virtual Seminars. Available online at https://drive.google.com/file/d/1_8avLSe1NIL51Oybgf7hIjHEPWSFbSai/view?usp=sharing. Accessed Mar 2021

  • Omar J, Slowikowski B, Boix A (2019) Chemometric approach for discriminating tobacco trademarks by near infrared spectroscopy. Forensic Sci Int 294:15–20. https://doi.org/10.1016/j.forsciint.2018.10.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pickworth WB, Rosenberry ZR, Yi D, Pitts EN, Lord-Adem W, Koszowski B (2018) Cigarillo and little cigar mainstream smoke constituents from replicated human smoking. Chem Res Toxicol 31(4):251–258. https://doi.org/10.1021/acs.chemrestox.7b00312

    Article  CAS  PubMed  Google Scholar 

  • Poisson C, Jourdain M, Verrier JL (2005) Applications of near infrared reflectance spectroscopy to tobacco plant breeding. In: 6th Bergerac Tobacco Scientific Meeting, p. 19–22

  • Rehder Silinski MA, Uenoyama T, Coleman DP, Blake JC, Thomas BF, Marusich JA, Jackson KJ, Meredith SE, Gahl RF (2020) Analysis of nicotine and non-nicotine tobacco constituents in aqueous smoke/aerosol extracts by UHPLC and ultraperformance convergence chromatography-tandem mass spectrometry. Chem Res Toxicol 33(12):2988–3000. https://doi.org/10.1021/acs.chemrestox.0c00312

    Article  CAS  PubMed  Google Scholar 

  • Ripley BD, Thompson M (1987) Regression techniques for the detection of analytical bias. Analyst 112:377–383

    Article  CAS  Google Scholar 

  • Rodgman A, Perfetti AT (2009) The chemical components of tobacco and tobacco smoke. CRC Press, New York

    Google Scholar 

  • Salam S, Saliba NA, Shihadeh A, Eissenberg T, El-Hellani A (2020) Flavor-toxicant correlation in e-cigarettes: a meta-analysis. Chem Res Toxicol 33(12):2932–2938. https://doi.org/10.1021/acs.chemrestox.0c00247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwanz TG, Bokowski LVV, Marcelo MCA, Jandrey AC, Dias JC, Maximiano DH, Canova LS, Pontes OFS, Sabin GP, Kaiser S (2019) Analysis of chemosensory markers in cigarette smoke from different tobacco varieties by GC×GC-TOFMS and chemometrics. Talanta 202:74–89

    Article  CAS  Google Scholar 

  • Searle PL (1984) The Berthelot or Indophenol reaction and its use in the analytical chemistry of nitrogen. A review. Analyst 109:549–567

    Article  CAS  Google Scholar 

  • Seeman JI, Carchman RA (2008) The possible role of ammonia toxicity on the exposure, deposition, retention and the bioavailability of nicotine during smoking. Food Chem Toxicol 46:1863–1881

    Article  CAS  Google Scholar 

  • Shao X, Wang F, Chen D, Su Q (2004) A method for near-infrared spectral calibration of complex plant samples with wavelet transform and elimination of uninformative variables. Anal Bioanal Chem 378:1382–1387

    Article  CAS  Google Scholar 

  • Shein M, Jeschke G (2019) Comparison of free radical levels in the aerosol from conventional cigarettes, electronic cigarettes, and heat-not-burn tobacco products. Chem Res Toxicol 32:1289–1298

    Article  CAS  Google Scholar 

  • Soares FLF, Marcelo MCA, Dias JC, Juliano LC, Porte LMF, Canova LS, Ardila JA, Pontes OFS, Sabin GP, Kaiser S (2020) Chemosensory aerosol assessment of key attributes for tobacco products. J Chemometrics. https://doi.org/10.1002/cem.3297

    Article  Google Scholar 

  • Spiegel M, Stephens LJ (2018) Schaum’s outline of theory and problems of statistics, 4th edn. Mac Graw-Hill, New York

    Google Scholar 

  • Stone H, Bleibaum RN, Thomas HA (2012) Sensory evaluation practices. 4th Ed. Food Science and Technology International Series. Academic Press, an imprint of Elsevier Inc: New York

  • Talhout R, Richter PA, Stepanov I, Watson CV, Watson CH (2018) Cigarette design features: effects on emission levels, user perception, and behavior. Tob Regul Sci 4(1):592–604

    Article  Google Scholar 

  • Tan C, Wang J, Wu T, Qin X, Li M (2010) Determination of nicotine in tobacco samples by near-infrared spectroscopy and boosting partial least squares. Vib Spec 54:35–41

    Article  CAS  Google Scholar 

  • Tang G, Huang Y, Tian K, Song X, Yan H, Hu J, Xiong Y, Min S (2014) A new spectral variable selection pattern using competitive adaptive reweighted sampling combined with successive projections algorithm. Analyst. https://doi.org/10.1039/c4an00837e

    Article  PubMed  Google Scholar 

  • Teillet B, Verron T, and Colard S (2017) Physical characteristics of handmade premium cigars: specifications and consequences of specifications. In: Abstracts of the CORESTA joint study group meeting. Smoke Science and Product technology. Kitzbühel, Austria, October 10, ST 07, p. 9

  • Uchiyama S, Noguchi M, Takagi N, Hayashida H, Inaba Y, Ogura H, Kunugita N (2018) Simple determination of gaseous and particulate compounds generated from heated tobacco products. Chem Res Toxicol 31:585–593

    Article  CAS  Google Scholar 

  • Valladares, R (2003) Instructivo para el acopio y beneficio del tabaco negro tapado. Ed. Agrinfor, La Habana, 59 pp

  • Van Mierlo B, Julien R, and Verron T (2018) Report on 12th Collaborative study September 2016—December 2017. Technical report CORESTA’s Sub-Group Cigar Smoking Methods. January, https://www.coresta.org/cigar-smoke-analysis-12th-collaborative-study-30988.html. Accessed 3 Jun, 2020

  • Wang S-Q, Wang W-J, Wu CC, Bao LJ, Yu Y, Zeng EY (2020) Low tar level does not reduce human exposure to polycyclic aromatic hydrocarbons in environmental tobacco smoke. Environ Sci Technol 54:1075–1081

    Article  CAS  Google Scholar 

  • Weeks WW (1999) Relationship between leaf chemistry and organoleptic properties of tobacco smoke. In: Davies DL, Nielsen M (eds) Tobacco Production, chemistry and technology, 1st edn. Blackwell science, Oxford

    Google Scholar 

  • Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst 58:109–130

    Article  CAS  Google Scholar 

  • Yin F, Karangwa E, Song S et al (2018) Contribution of tobacco composition compounds to characteristic aroma of Chinese faint-scent cigarettes through chromatography analysis and partial least squares regression. J Chromatogr B 1105:217227

    Google Scholar 

  • Zhang Y, Cong Q, Xie Y, Yang J, Zhao B (2008) Quantitative analysis of routine chemical constituents in tobacco by near-infrared spectroscopy and support vector machine. Spectrochimica Acta Part A 71:1408–1413

    Article  Google Scholar 

  • Zhang M, Cai W, Shao X (2011) Wavelet unfolded partial least squares for near-infrared spectra quantitative analysis of blood and tobacco powder samples. Analyst 136:4217–4221

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work received support from Tabacuba and Tabacalera SLU, a former Imperial Brands PLC company. Authors appreciate the help of all colleagues from the “Instituto de Investigaciones del Tabaco” and “Reemtsma Cigarettenfabriken GmbH,” for their help during all phases of experimentation. We are grateful to María Esther Hernandez Reyes, BSc for her valuable assistance during establishing sensory profiles, and to Oscar Rivera, BEng and Nelson Rodríguez, PhD for their contribution with tobacco sampling and processing. Special thanks to Mr. Christian Schulz, Michael Intorp, PhD, Mr. Justo M. Mendaza Martínez and Ms. Gema B. Hidalgo Castaño.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amaury Borges-Miranda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borges-Miranda, A., Silva-Mata, F.J., Talavera-Bustamante, I. et al. The role of chemosensory relationships to improve raw materials’ selection for Premium cigar manufacture. Chem. Pap. 75, 4075–4091 (2021). https://doi.org/10.1007/s11696-021-01577-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-021-01577-z

Keywords

Navigation