Athaillah, Suratman A, Suyanta, (2018) Synthesis of mixed matrix membrane Alginate/Natural Zeolite/Kaolinite for the separation of CO2 and CH4 gases (Sintesis membran matriks tercampur Alginat/Zeolit Alam/Kaolin untuk pemisahan gas CO2 dan CH4). J. Math. Nat. Sci. BIMIPA 25(1):42–52
Google Scholar
Basu S, Cano-Odena A, Vankelecom IFJ (2011) MOF-containing mixed-matrix membranes for CO2/CH4 and CO2/N2 binary gas mixture separations. Sep Purif Technol 81:31–40. https://doi.org/10.1016/j.seppur.2011.06.037
CAS
Article
Google Scholar
Benzaqui M, Pillai RS, Sabetghadam A, Benoit V, Normand P, Marrot J, Menguy N, Montero D, Shepard W, Tissot A, Martineau-Corcos C, Sicard C, Mihaylov M, Carn F, Beurroies I, Llewellyn PL, De Weireld G, Hadjiivanov K, Gascon J, Kapteijn F, Maurin G, Steunou N, Serre C (2017) Revisiting the aluminum trimesate-based MOF (MIL-96): From structure determination to the processing of mixed matrix membranes for CO2 capture. Chem Mater 29(24):10326–10338. https://doi.org/10.1021/acs.chemmater.7b03203
CAS
Article
Google Scholar
Budi RFS, Suparman S (2013) Calculation of CO2 emission factors for Coal electric steam power plant and nuclear power plan (Perhitungan faktor emisi CO2 PLTU Batubara dan PLTN). J Pengemb Energi Nukl 15(1):1–8. https://doi.org/10.17146/jpen.2013.15.1.1612
Article
Google Scholar
De Meis D (2017) Gas transport through porous membranes. ENEA. 7:1–19
Google Scholar
Dechnik J, Sumby CJ, Janiak C (2017) Enhancing mixed-matrix membrane performance with metal-organic framework additives. Cryst Growth Des 17(8):4467–4488. https://doi.org/10.1021/acs.cgd.7b00595
CAS
Article
Google Scholar
Denny MS, Cohen SM (2015) In situ modification of metal-organic frameworks in mixed-matrix membranes. Angew Chem Int Ed 54:9029–9032. https://doi.org/10.1002/anie.201504077
CAS
Article
Google Scholar
Etxeberria-Benavides M, David O, Johnson T, Łozińska MM, Orsi A, Wright PA, Mastel S, Hillenbrand R, Kapteijn F, Gascon J (2018) High performance mixed matrix membranes (MMMs) composed of ZIF-94 filler and 6FDA-DAM polymer. J Membr Sci 550:198–207. https://doi.org/10.1016/j.memsci.2017.12.033
CAS
Article
Google Scholar
Fahmi MZ, Wathoniyyah M, Khasanah M, Rahardjo Y, Wafiroh S, Abdulloh, (2018) Incorporation of graphene oxide in polyethersulfone mixed matrix membranes to enhance hemodialysis membrane performance. RSC Adv 8:931–937. https://doi.org/10.1039/C7RA11247E
CAS
Article
Google Scholar
Farnam M, Mukhtar H, Shariff A (2016) Analysis of the influence of CMS variable percentages on pure PES membrane gas separation performance. Procedia Eng 148:1206–1212. https://doi.org/10.1016/j.proeng.2016.06.449
CAS
Article
Google Scholar
Ferey G, Mellot-draznieks C, Serre C, Millange F (2005) Crystallized frameworks with giant pores : Are there limits to the possible. Acc Chem Res 38(4):217–225. https://doi.org/10.1021/ar040163i
CAS
Article
PubMed
Google Scholar
Fernández-Barquín A, Casado-Coterillo C, Irabien A (2017) Separation of CO2-N2 gas mixtures: Membrane combination and temperature influence. Sep Purif Technol 188:197–205. https://doi.org/10.1016/j.seppur.2017.07.029
CAS
Article
Google Scholar
Gholami F, Zinadini S, Zinatizadeh AA, Abbasi AR (2018) TMU-5 metal-organic frameworks (MOFs) as a novel nanofiller for flux increment and fouling mitigation in PES ultrafiltration membrane. Sep Purif Technol 194:272–280. https://doi.org/10.1016/j.seppur.2017.11.054
CAS
Article
Google Scholar
Gong H, Nguyen TH, Wang R, Bae TH (2015) Separations of binary mixtures of CO2/CH4 and CO2/N2 with mixed-matrix membranes containing Zn(pyrz)2(SiF6) metal-organic framework. J Membr Sci 495:169–175. https://doi.org/10.1016/j.memsci.2015.08.018
CAS
Article
Google Scholar
Huang J, Yang H, Chen M, Ji T, Hou Z, Wu M (2017) An infrared spectroscopy study of PES PVP blend and PES-g-PVP copolymer. Polym Test 59:212–219. https://doi.org/10.1016/j.polymertesting.2017.02.005
CAS
Article
Google Scholar
Jeazet HBT, Staudt C, Janiak C (2012) Metal-organic frameworks in mixed-matrix membranes for gas separation. Dalton Trans 41(46):14003–14027. https://doi.org/10.1039/C2DT31550E
Article
Google Scholar
Jevrejeva S, Grinsted A, Moore JC (2014) Upper limit for sea level projections by 2100. Environ Res Lett 9:1–9. https://doi.org/10.1088/1748-9326/9/10/104008
Article
Google Scholar
Khan NA, Lee JS, Jeon J, Jun CH, Jhung SH (2012) Phase-selective synthesis and phase-conversion of porous aluminum-benzenetricarboxylates with microwave irradiation. Micropor Mesopor Mat 152:235–239. https://doi.org/10.1016/j.micromeso.2011.11.025
CAS
Article
Google Scholar
Kim DL, Vovusha H, Schwingenschlögl U, Nunes SP (2017) Polyethersulfone flat sheet and hollow fiber membranes from solutions in ionic liquids. J Membr Sci 539:161–171. https://doi.org/10.1016/j.memsci.2017.06.001
CAS
Article
Google Scholar
Knebel A, Friebe S, Bigall NC, Benzaqui M, Serre C, Caro J (2016) Comparative study of MIL-96(Al) as continuous metal-organic frameworks layer and mixed-matrix membrane. ACS Appl Mater Interfaces 8(11):7536–7544. https://doi.org/10.1021/acsami.5b12541
CAS
Article
PubMed
Google Scholar
Kumar S, Prasad K, Gil JM, Sobral AJFN, Koh J (2018) Mesoporous zeolite-chitosan composite for enhanced capture and catalytic activity in chemical fixation of CO2. Carbohydr Polym 198:401–406. https://doi.org/10.1016/j.carbpol.2018.06.100
CAS
Article
PubMed
Google Scholar
Lajunen A, Lipman T (2016) Lifecycle cost assessment and carbon dioxide emissions of diesel, natural gas, hybrid electric, fuel cell hybrid and electric transit buses. Energy 106:329–342. https://doi.org/10.1016/j.energy.2016.03.075
CAS
Article
Google Scholar
Loiseau T, Lecroq L, Volkringer C, Marrot J, Ferey G, Haouas M, Taulelle F, Bourrelly S, Llewellyn PL, Latroche M (2006) MIL-96, a porous aluminum trimesate 3D structure constructed from a hexagonal network of 18-membered rings and 3-oxo-centered trinuclear units. J Am Chem Soc 128(31):10223–10230. https://doi.org/10.1021/ja0621086
CAS
Article
PubMed
Google Scholar
Lokhandwala KA, Pinnau I, He Z, Amo KD, DaCosta AR, Wijmans JG, Baker RW (2010) Membrane separation of nitrogen from natural gas: A case study from membrane synthesis to commercial deployment. J Memb Sci 346:270–279. https://doi.org/10.1016/j.memsci.2009.09.046
CAS
Article
Google Scholar
Mahdavi H, Moradi-garakani F (2017) Effect of mixed matrix membranes comprising a novel trinuclear zinc MOF, fumed silica nanoparticles and PES on CO2/CH4 separation. Chem Eng Res Des 125:156–165. https://doi.org/10.1016/j.cherd.2017.07.007
CAS
Article
Google Scholar
Meshkat S, Kaliaguine S, Rodrigue D (2018) Mixed matrix membranes based on amine and non-amine MIL-53(Al) in Pebax MH-1657 for CO2 separation. Sep Purif Technol 53:177–190. https://doi.org/10.1016/j.seppur.2018.02.038
CAS
Article
Google Scholar
Mohammadnezhad F, Feyzi M, Zinadini S (2019) A novel Ce-MOF/PES mixed matrix membrane; synthesis, characterization and antifouling evaluation. J Ind Eng Chem 71:99–111. https://doi.org/10.1016/j.jiec.2018.09.032
CAS
Article
Google Scholar
Momeni SM, Pakizeh M (2013) Preparation, characterization and gas permeation study of psf/mgo nanocomposite membrane. Braz J Chem Eng 30(3):589–597. https://doi.org/10.1590/S0104-66322013000300016
Article
Google Scholar
Naderi A, Yong WF, Xiao Y, Chung TS, Weber M, Maletzko C (2018) Effects of chemical structure on gas transport properties of polyethersulfone polymers. Polym J 135:76–84. https://doi.org/10.1016/j.polymer.2017.12.014
CAS
Article
Google Scholar
Nam ND, Somers A, Mathesh M, Seter M, Hinton B, Forsyth M, Tan MYJ (2014) The behaviour of praseodymium 4-hydroxycinnamate as an inhibitor for carbon dioxide corrosion and oxygen corrosion of steel in NaCl solutions. Corros Sci 80:128–138. https://doi.org/10.1016/j.corsci.2013.11.013
CAS
Article
Google Scholar
Nemestothy N, Bakonyi P, Szentgyorgyi E, Kumar G, Nguyen DD, Chang SW, Kim S, Katalin B (2018) Evaluation of a membrane permeation system for biogas upgrading using model and real gaseous mixtures: The effect of operating conditions on separation behaviour, methane recovery and process stability. J Clean Prod 185:44–51. https://doi.org/10.1016/j.jclepro.2018.03.047
CAS
Article
Google Scholar
Orakwe IR, Nwogu NC, Kajama M, Shehu H, Okon E, Gobina E (2015) An initial study of single gas permeation using a commercial alumina membrane. In: Proceedings of the world congress on engineering. II, London, UK, 2015: 3–5. ISSN: 2078-0958
Pan M, Zhao Y, Zeng X, Zou J, Pan M, Zhao Y, Zeng X, Zou J (2018) Efficient absorption of CO2 by introduction of intramolecular hydrogen bonding in chiral amino acid ionic liquids. Energ Fuel 32:6130–6135. https://doi.org/10.1021/acs.energyfuels.8b00879
CAS
Article
Google Scholar
Qu P, Tang H, Gao Y, Zhang L, Wang S (2010) Polyethersulfone composite membrane blended with cellulose fibrils. BioResources 5:2323–2336
CAS
Google Scholar
Rezakazemi M, Amooghin AE, Montazer-Rahmati MM, Ismail AF, Matsuura T (2014) State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions. Prog Polym Sci 39(5):817–861. https://doi.org/10.1016/j.progpolymsci.2004.01.003
CAS
Article
Google Scholar
Robeson LM (1991) Correlation of separation factor versus permeability for polymeric membranes. J Membr Sci 62(2):165–185. https://doi.org/10.1016/0376-7388(91)80060-J
CAS
Article
Google Scholar
Robeson LM (2008) The upper bound revisited. J Membr Sci 320(1–2):390–400. https://doi.org/10.1016/j.memsci.2008.04.030
CAS
Article
Google Scholar
Rodrigues MA, Ribeiro JS, Costa ES, Lopes de Miranda J, Ferraz HC (2018) Nanostructured membranes containing UiO-66 (Zr) and MIL-101 (Cr) for O2/N2 and CO2/N2 separation. Sep Purif Technol 192:491–500. https://doi.org/10.1016/j.seppur.2017.10.024
CAS
Article
Google Scholar
Seoane B, Dikhtiarenko A, Mayoral A, Tellez C, Coronas J, Kapteijn F, Gascon J (2015) Metal organic framework synthesis in the presence of surfactants: towards hierarchical MOFs? Cryst Eng Comm 17(7):1693–1700. https://doi.org/10.1039/C4CE02324B
CAS
Article
PubMed
Google Scholar
Seoane B, Sebastián V, Téllez C, Coronas J (2013) Crystallization in THF: The possibility of one-pot synthesis of mixed matrix membranes containing MOF MIL-68(Al). Cryst Eng Comm 15(46):9483–9490. https://doi.org/10.1039/C3CE40847G
CAS
Article
Google Scholar
Setyorini A, Suhartana P (2018) Natural zeolite modification using dithizone and its application as adsorbent of Cu( II ). J Kim Sains dan Apl 21:98–101
CAS
Article
Google Scholar
Shahid S, Nijmeijer K, Nehache S, Vankelecom I, Deratani A, Quemener D (2015) MOF-mixed matrix membranes: Precise dispersion of MOF particles with better compatibility via a particle fusion approach for enhanced gas separation properties. J Memb Sci 492:21–31. https://doi.org/10.1016/j.memsci.2015.05.015
CAS
Article
Google Scholar
Sharma P, Seong JK, Jung YH, Choi SH, Park SD, Yoon YII, Baek IH (2012) Amine modified and pelletized mesoporous materials: Synthesis, textural-mechanical characterization and application in adsorptive separation of carbondioxide. Powder Technol 219:86–98. https://doi.org/10.1016/j.powtec.2011.12.023
CAS
Article
Google Scholar
Songolzadeh M, Soleimani M, Ravanchi MT, Songolzadeh R (2014) Carbon dioxide separation from flue gases : A technological review emphasizing reduction in greenhouse gas emissions. ScientificWorldJournal 2014:1–35. https://doi.org/10.1155/2014/828131
CAS
Article
Google Scholar
Sreedhar I, Vaidhiswaran R, Kamani BM, Venugopal A (2017) Process and engineering trends in membrane based carbon capture. Renew Sustain Energy Rev 68:659–684. https://doi.org/10.1016/j.rser.2016.10.025
CAS
Article
Google Scholar
Sun C, Srivastava DJ, Grandinetti PJ, Dutta PK (2016) Synthesis of chabazite/polymer composite membrane for CO2/N2 separation. Micropor Mesopor Mat 230:208–216. https://doi.org/10.1016/j.micromeso.2016.04.042
CAS
Article
Google Scholar
Trickett CA, Helal A, Al-maythalony BA, Yamani ZH, Cordova KE, Yaghi OM (2017) The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion. Nat Rev Mater 2(17045):1–16. https://doi.org/10.1038/natrevmats.2017.45
CAS
Article
Google Scholar
Vinh-Thang H, Kaliaguine S (2013) Predictive models for mixed-matrix membrane performance: A review. Chem Rev 113(7):4980–5028. https://doi.org/10.1021/cr3003888
CAS
Article
PubMed
Google Scholar
Vinoba M, Bhagiyalakshmi M, Alqaheem Y, Alomair AA, Pérez A, Rana MS (2017) Recent progress of fillers in mixed matrix membranes for CO2 separation : A review. Sep Purif Technol 188:431–450. https://doi.org/10.1016/j.seppur.2017.07.051
CAS
Article
Google Scholar
Vitillo JG (2015) Magnesium-based systems for carbon dioxide capture, storage and recycling: From leaves to synthetic nanostructured materials. RSC Adv 5(46):36192–36239. https://doi.org/10.1039/C5RA02835C
CAS
Article
Google Scholar
Weigelt F, Georgopanos P, Shishatskiy S, Filiz V, Brinkmann T, Abetz V (2018) Development and characterization of defect-free Matrimid® mixed-matrix membranes containing activated carbon particles for gas separation. Polymers 10(51):1–21. https://doi.org/10.3390/polym10010051
CAS
Article
Google Scholar
Xu R, Wang Z, Wang M, Qiao Z, Wang J (2019) High nanoparticles loadings mixed matrix membranes via chemical bridging-crosslinking for CO2 separation. J Membr Sci 573:455–464. https://doi.org/10.1016/j.memsci.2018.12.027
CAS
Article
Google Scholar
Yi Z, Zhu L, Cheng L, Zhu B, Xu Y (2012) A readily modified polyethersulfone with amino-substituted groups: Its amphiphilic copolymer synthesis and membrane application. Polym J 53(2):350–358. https://doi.org/10.1016/j.polymer.2011.11.053
CAS
Article
Google Scholar
Yoo GY, Lee WR, Jo H, Park J, Song JH, Lim KS, Moon D, Jung H, Lim J, Han SS, Jung Y, Hong CS (2016) Adsorption of carbon dioxide on unsaturated metal sites in M2(dobpdc) frameworks with exceptional structural stability and relation between Lewis acidity and adsorption enthalpy. Chem Eur J 22(22):7444–7451. https://doi.org/10.1002/chem.201600189
CAS
Article
PubMed
Google Scholar