Adhikari S, Ghosh A, Ghosh M, Guria S, Das D (2017) Ratiometric sensing of Fe3+ through PET-CHEF-FRET processes: live cell imaging, speciation and DFT studies. Sensors Actuators B Chem 251:942–950. https://doi.org/10.1016/j.snb.2017.05.135
CAS
Article
Google Scholar
Aydin Z, Wei Y, Guo M (2012) A highly selective rhodamine based turn-on optical sensor for Fe3+. Inorg Chem Commun 20:93–96. https://doi.org/10.1016/j.inoche.2012.02.025
CAS
Article
Google Scholar
Bao X et al (2014) A new Rhodamine B-based ‘on–off’ chemical sensor with high selectivity and sensitivity toward Fe3+ and its imaging in living cells. Bioorg Med Chem 22:4826–4835. https://doi.org/10.1016/j.bmc.2014.06.054
CAS
Article
PubMed
Google Scholar
Bao X et al (2015) A new selective fluorescent chemical sensor for Fe3+ based on rhodamine B and a 1,4,7,10-tetraoxa-13-azacyclopentadecane conjugate and its imaging in living cells. Sensors Actuators B Chem 208:54–66. https://doi.org/10.1016/j.snb.2014.10.127
CAS
Article
Google Scholar
Beija M, Afonso CAM, Martinho JMG (2009) Synthesis and applications of Rhodamine derivatives as fluorescent probes. Chem Soc Rev 38:2410–2433. https://doi.org/10.1039/B901612K
CAS
Article
PubMed
Google Scholar
Bhalla V, Sharma N, Kumar N, Kumar M (2013) Rhodamine based fluorescence turn-on chemosensor for nanomolar detection of Fe3+ ions. Sensors Actuators B Chem 178:228–232. https://doi.org/10.1016/j.snb.2012.12.066
CAS
Article
Google Scholar
Bhorge YR, Tsai H-T, Huang K-F, Pape AJ, Janaki SN, Yen Y-P (2014) A new pyrene-based Schiff-base: a selective colorimetric and fluorescent chemosensor for detection of Cu(II) and Fe(III). Spectrochim Acta Part A Mol Biomol Spectrosc 130:7–12. https://doi.org/10.1016/j.saa.2014.03.110
CAS
Article
Google Scholar
Burdette SC (2015) Key considerations for sensing feii and feiii in aqueous media. Eur J Inorg Chem 2015:5728–5729. https://doi.org/10.1002/ejic.201500566
CAS
Article
Google Scholar
Cao X, Zhang F, Bai Y, Ding X, Sun W (2019) A highly selective “turn-on” fluorescent probe for detection of Fe3+ in cells. J Fluoresc 29:425–434. https://doi.org/10.1007/s10895-019-02351-x
CAS
Article
PubMed
Google Scholar
Chai M, Zhang D, Wang M, Hong H, Ye Y, Zhao Y (2012) Four Rhodamine B-based fluorescent chemosensor for Fe3+ in aqueous solution. Sensors Actuators B Chem 174:231–236. https://doi.org/10.1016/j.snb.2012.08.003
CAS
Article
Google Scholar
Chang K-C, Su I-H, Lee G-H, Chung W-S (2007a) Triazole- and azo-coupled calix[4]arene as a highly sensitive chromogenic sensor for Ca2+ and Pb2+ ions. Tetrahedron Lett 48:7274–7278. https://doi.org/10.1016/j.tetlet.2007.08.045
CAS
Article
Google Scholar
Chang K-C, Su I-H, Senthilvelan A, Chung W-S (2007b) Triazole-modified Calix[4]crown as a novel fluorescent on−off switchable chemosensor. Org Lett 9:3363–3366. https://doi.org/10.1021/ol071337
CAS
Article
PubMed
Google Scholar
Chen Q, Fang Z (2018) Two sugar-rhodamine “turn-on” fluorescent probes for the selective detection of Fe3+. Spectrochim Acta Part A Mol Biomol Spectrosc 193:226–234. https://doi.org/10.1016/j.saa.2017.12.023
CAS
Article
Google Scholar
Chen K-H, Lu C-Y, Cheng H-J, Chen S-J, Hu C-H, Wu A-T (2010) A pyrenyl-appended triazole-based ribose as a fluorescent sensor for Hg2+ ion. Carbohyd Res 345:2557–2561. https://doi.org/10.1016/j.carres.2010.09.010
CAS
Article
Google Scholar
Chen H, Bao X, Shu H, Zhou B, Ye R, Zhu J (2017) Synthesis and evaluation of a novel rhodamine B-based ‘off-on’ fluorescent chemosensor for the selective determination of Fe3+ ions. Sensors Actuators B Chem 242:921–931. https://doi.org/10.1016/j.snb.2016.09.163
CAS
Article
Google Scholar
Chen X, Sun W, Bai Y, Zhang F, Zhao J, Ding X (2018) Novel rhodamine schiff base type naked-eye fluorescent probe for sensing Fe3+ and the application in cell. Spectrochim Acta Part A Mol Biomol Spectrosc 191:566–572. https://doi.org/10.1016/j.saa.2017.10.029
CAS
Article
Google Scholar
Erdemir S, Kocyigit O (2016) Anthracene excimer-based “turn on” fluorescent sensor for Cr3+ and Fe3+ ions: Its application to living cells. Talanta 158:63–69. https://doi.org/10.1016/j.talanta.2016.05.017
CAS
Article
PubMed
Google Scholar
Fang X et al (2014) The solvent-dependent binding modes of a rhodamine-azacrown based fluorescent probe for Al3+ and Fe3+. Dyes Pigm 101:58–66. https://doi.org/10.1016/j.dyepig.2013.09.036
CAS
Article
Google Scholar
Hou S, Qu Z, Zhong K, Bian Y, Tang L (2016) A new Rhodamine-based visual and fluorometric probe for selective detection of trivalent cations. Tetrahedron Lett 57:2616–2619. https://doi.org/10.1016/j.tetlet.2016.04.106
CAS
Article
Google Scholar
Hu Z-Q et al (2011) Fe3+-selective fluorescent probe based on rhodamine B and its application in bioimaging. Sensors Actuators B Chem 156:428–432. https://doi.org/10.1016/j.snb.2011.04.075
CAS
Article
Google Scholar
Hung H-C, Cheng C-W, Ho IT, Chung W-S (2009) Dual-mode recognition of transition metal ions by bis-triazoles chained pyrenes. Tetrahedron Lett 50:302–305. https://doi.org/10.1016/j.tetlet.2008.10.147
CAS
Article
Google Scholar
Jeong Y, Yoon J (2012) Recent progress on fluorescent chemosensors for metal ions. Inorg Chim Acta 381:2–14. https://doi.org/10.1016/j.ica.2011.09.011
CAS
Article
Google Scholar
Kamal A, Kumar S, Kumar V, Mahajan RK (2015) Selective sensing ability of ferrocene appended quinoline-triazole derivative toward Fe (III) ions. Sensors Actuators B Chem 221:370–378. https://doi.org/10.1016/j.snb.2015.06.147
CAS
Article
Google Scholar
Kim HN, Lee MH, Kim HJ, Kim JS, Yoon J (2008) A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions. Chem Soc Rev 37:1465–1472. https://doi.org/10.1039/B802497A
CAS
Article
PubMed
Google Scholar
Kongkaew M, Sitthisuwannakul K, Nakarajouyphon V, Pornsuwan S, Kongsaeree P, Sangtrirutnugul P (2016) Benzimidazole–triazole ligands with pendent triazole functionality: unexpected formation and effects on copper-catalyzed aerobic alcohol oxidation. Dalton Trans 45:16810–16819. https://doi.org/10.1039/C6DT02770A
CAS
Article
PubMed
Google Scholar
Kumar R, Gahlyan P, Yadav N, Bhandari M, Kakkar R, Dalela M, Prasad AK (2017) Bis-triazolylated-1,4-dihydropyridine—highly selective hydrophilic fluorescent probe for detection of Fe3+. Dyes Pigm 147:420–428. https://doi.org/10.1016/j.dyepig.2017.08.048
CAS
Article
Google Scholar
Lashgari N, Badiei A, Mohammadi Ziarani G (2016) A fluorescent sensor for Al(III) and colorimetric sensor for Fe(III) and Fe(II) based on a novel 8-hydroxyquinoline derivative. J Fluoresc 26:1885–1894. https://doi.org/10.1007/s10895-016-1883-3
CAS
Article
PubMed
Google Scholar
Lau YH, Rutledge PJ, Watkinson M, Todd MH (2011) Chemical sensors that incorporate click-derived triazoles. Chem Soc Rev 40:2848–2866. https://doi.org/10.1039/C0CS00143K
CAS
Article
PubMed
Google Scholar
Lee S, Jang H, Lee J, Jeon SH, Sohn Y, Ra CS (2017) Selective and sensitive morpholine-type rhodamine B-based colorimetric and fluorescent chemosensor for Fe(III) and Fe(II). Sensors Actuators B Chem 248:646–656. https://doi.org/10.1016/j.snb.2017.04.046
CAS
Article
Google Scholar
Li Z, Zhou Y, Yin K, Yu Z, Li Y, Ren J (2014) A new fluorescence “turn-on” type chemosensor for Fe3+ based on naphthalimide and coumarin. Dyes Pigm 105:7–11. https://doi.org/10.1016/j.dyepig.2013.12.032
CAS
Article
Google Scholar
Li Z, Li H, Shi C, Yu M, Wei L, Ni Z (2016) Nanomolar colorimetric quantitative detection of Fe3+ and PPi with high selectivity. Spectrochim Acta Part A Mol Biomol Spectrosc 159:249–253. https://doi.org/10.1016/j.saa.2016.02.001
CAS
Article
Google Scholar
Liu Y et al (2016) A naked-eye visible and turn-on fluorescence probe for Fe3+ and its bioimaging application in living cells. Sensors Actuators B Chem 237:501–508. https://doi.org/10.1016/j.snb.2016.06.123
CAS
Article
Google Scholar
Moon K-S, Yang Y-K, Ji S, Tae J (2010) Aminoxy-linked rhodamine hydroxamate as fluorescent chemosensor for Fe3+ in aqueous media. Tetrahedron Lett 51:3290–3293. https://doi.org/10.1016/j.tetlet.2010.04.068
CAS
Article
Google Scholar
Nayab PS, Shkir M (2017a) A dual responsive colorimetric and fluorescent reversible turn-on chemosensor for iron (Fe3+): Computational and spectroscopic investigations. Sensors Actuators B Chem 245:395–405. https://doi.org/10.1016/j.snb.2017.01.072
CAS
Article
Google Scholar
Nayab PS, Shkir M (2017b) Rapid and simultaneous detection of Cr (III) and Fe (III) ions by a new naked eye and fluorescent probe and its application in real samples. Sensors Actuators B Chem 251:951–957. https://doi.org/10.1016/j.snb.2017.05.102
CAS
Article
Google Scholar
Paisuwan W, Rashatasakhon P, Ruangpornvisuti V, Sukwattanasinitt M, Ajavakom A (2019) Dipicolylamino quinoline derivative as novel dual fluorescent detecting system for Hg2+ and Fe3+. Sensing Bio-Sens Res 24:100283. https://doi.org/10.1016/j.sbsr.2019.100283
Article
Google Scholar
Pak YL, Swamy KMK, Yoon J (2015) Recent progress in fluorescent imaging probes. Sensors 15:24374–24396
Article
Google Scholar
Rathinam B, Chien C-C, Chen B-C, Liu J-H (2013) Fluorogenic and chromogenic detection of Cu2+ and Fe3+ species in aqueous media by rhodamine–triazole conjugate. Tetrahedron 69:235–241. https://doi.org/10.1016/j.tet.2012.10.040
CAS
Article
Google Scholar
Roy N, Dutta A, Mondal P, Paul PC, Sanjoy Singh T (2017) Coumarin based fluorescent probe for colorimetric detection of Fe3+ and fluorescence turn on-off response of Zn2+ and Cu2+. J Fluoresc 27:1307–1321. https://doi.org/10.1007/s10895-017-2065-7
CAS
Article
PubMed
Google Scholar
Ruan Y-B, Yi H, Xie J (2013) Hg2+-promoted photoactivation of triazolyl rhodamine. Photochem Photobiol Sci 12:1103–1109. https://doi.org/10.1039/C3PP25417H
CAS
Article
PubMed
Google Scholar
Sahoo SK, Crisponi G (2019) Recent advances on iron(III) selective fluorescent probes with possible applications in bioimaging. Molecules 24:3267
CAS
Article
Google Scholar
Saleem M, Abdullah R, Ali A, Park BJ, Choi EH, Hong IS, Lee KH (2014) Facile synthesis, cytotoxicity and bioimaging of Fe3+ selective fluorescent chemosensor. Bioorg Med Chem 22:2045–2051. https://doi.org/10.1016/j.bmc.2014.02.045
CAS
Article
PubMed
Google Scholar
Santhoshkumar S, Velmurugan K, Prabhu J, Radhakrishnan G, Nandhakumar R (2016) A naphthalene derived Schiff base as a selective fluorescent probe for Fe2+. Inorg Chim Acta 439:1–7. https://doi.org/10.1016/j.ica.2015.09.030
CAS
Article
Google Scholar
Sirajuddin Nayab P, Shkir M, Gull P, AlFaify S (2017) A highly sensitive “Off-On” optical and fluorescent chemodosimeter for detecting iron (III) and its application in practical samples: an investigation of Fe3+ induced oxidation by mass spectrometry. J Photochem Photobiol A 347:209–217. https://doi.org/10.1016/j.jphotochem.2017.07.048
CAS
Article
Google Scholar
Sivaraman G, Sathiyaraja V, Chellappa D (2014) Turn-on fluorogenic and chromogenic detection of Fe(III) and its application in living cell imaging. J Lumin 145:480–485. https://doi.org/10.1016/j.jlumin.2013.08.018
CAS
Article
Google Scholar
Sui B, Tang S, Liu T, Kim B, Belfield KD (2014) Novel BODIPY-based fluorescence turn-on sensor for Fe3+ and its bioimaging application in living cells. ACS Appl Mater Interfaces 6:18408–18412. https://doi.org/10.1021/am506262u
CAS
Article
PubMed
Google Scholar
Tang X, Han J, Wang Y, Ni L, Bao X, Wang L, Zhang W (2017) A multifunctional schiff base as a fluorescence sensor for Fe3+ and Zn2+ ions, and a colorimetric sensor for Cu2+ and applications. Spectrochim Acta Part A Mol Biomol Spectrosc 173:721–726. https://doi.org/10.1016/j.saa.2016.10.028
CAS
Article
Google Scholar
Tümay SO, Sarıkaya SY, Yeşilot S (2018) Novel iron(III) selective fluorescent probe based on synergistic effect of pyrene-triazole units on a cyclotriphosphazene scaffold and its utility in real samples. J Lumin 196:126–135. https://doi.org/10.1016/j.jlumin.2017.12.019
CAS
Article
Google Scholar
Wang K-P et al (2017a) Fluorescent probe for Fe(III) with high selectivity and its application in living cells. Sensors Actuators B Chem 252:1140–1145. https://doi.org/10.1016/j.snb.2017.07.184
CAS
Article
Google Scholar
Wang L, Li W-T, Qu W-J, Su J-X, Lin Q, Wei T-B, Zhang Y-M (2017b) A highly selective fluorescent chemosensor for successive detection of Fe3+ and CN− in pure water. Supramol Chem 29:489–496. https://doi.org/10.1080/10610278.2016.1277586
Article
Google Scholar
Wang L, Ye D, Li W, Liu Y, Li L, Zhang W, Ni L (2017c) Fluorescent and colorimetric detection of Fe(III) and Cu(II) by a difunctional rhodamine-based probe. Spectrochim Acta Part A Mol Biomol Spectrosc 183:291–297. https://doi.org/10.1016/j.saa.2017.04.056
CAS
Article
Google Scholar
Wechakorn K, Suksen K, Piyachaturawat P, Kongsaeree P (2016) Rhodamine-based fluorescent and colorimetric sensor for zinc and its application in bioimaging. Sensors Actuators B Chem 228:270–277. https://doi.org/10.1016/j.snb.2016.01.045
CAS
Article
Google Scholar
Weerasinghe AJ, Abebe FA, Sinn E (2011) Rhodamine based turn-ON dual sensor for Fe3+ and Cu2+. Tetrahedron Lett 52:5648–5651. https://doi.org/10.1016/j.tetlet.2011.08.092
CAS
Article
Google Scholar
Wu H, Yang L, Chen L, Xiang F, Gao H (2017) Visual determination of ferric ions in aqueous solution based on a high selectivity and sensitivity ratiometric fluorescent nanosensor. Anal Methods 9:5935–5942. https://doi.org/10.1039/C7AY01917C
CAS
Article
Google Scholar
Xie P, Guo F, Xia R, Wang Y, Yao D, Yang G, Xie L (2014) A rhodamine–dansyl conjugate as a FRET based sensor for Fe3+ in the red spectral region. J Lumin 145:849–854. https://doi.org/10.1016/j.jlumin.2013.09.003
CAS
Article
Google Scholar
Xu J-H, Hou Y-M, Ma Q-J, Wu X-F, Wei X-J (2013) A highly selective fluorescent sensor for Fe3+ based on covalently immobilized derivative of naphthalimide. Spectrochim Acta Part A Mol Biomol Spectrosc 112:116–124. https://doi.org/10.1016/j.saa.2013.04.044
CAS
Article
Google Scholar
Yan F et al (2015) Rhodamine-aminopyridine based fluorescent sensors for Fe3+ in water: synthesis, quantum chemical interpretation and living cell application. Sensors Actuators B Chem 215:598–606. https://doi.org/10.1016/j.snb.2015.03.096
CAS
Article
Google Scholar
Yang Y, Gao C-Y, Liu J, Dong D (2016a) Recent developments in rhodamine salicylidene hydrazone chemosensors. Anal Methods 8:2863–2871. https://doi.org/10.1039/C6AY00135A
CAS
Article
Google Scholar
Yang Y, Gao C-Y, Zhang N, Dong D (2016b) Tetraphenylethene functionalized rhodamine chemosensor for Fe3+ and Cu2+ ions in aqueous media. Sensors Actuators B Chem 222:741–746. https://doi.org/10.1016/j.snb.2015.08.125
CAS
Article
Google Scholar
Zhao M et al (2017) Pyrene excimer-based fluorescent sensor for detection and removal of Fe3+ and Pb2+ from aqueous solutions. Spectrochim Acta Part A Mol Biomol Spectrosc 173:235–240. https://doi.org/10.1016/j.saa.2016.09.033
CAS
Article
Google Scholar
Zheng H, Zhan X-Q, Bian Q-N, Zhang X-J (2013) Advances in modifying fluorescein and rhodamine fluorophores as fluorescent chemosensors. Chem Commun 49:429–447. https://doi.org/10.1039/C2CC35997A
CAS
Article
Google Scholar