Skip to main content

Prussian blue analogues as heterogeneous catalysts for hydrogen generation from hydrolysis of sodium borohydride: a comparative study

Abstract

As a special class of coordinated frameworks comprised of various metal species, Prussian blue analogues (PBAs) have received increasing attention for catalytic applications. Nevertheless, few studies have been performed to investigate catalytic activities of PBAs for hydrogen generation (HG) from NaBH4 hydrolysis. No researches have been implemented to examine effects of different MII and MIII of PBAs (MII3[MIII(CN)6]2) (MII = Co, Fe, Mn, Ni, and Zn; MIII = Fe, Co) on NaBH4 hydrolysis for HG. Thus, the aim of the study is to explore and compare catalytic activities of various PBAs for HG from NaBH4 hydrolysis. While two hexacyano-metalates and different metals are used to obtain various PBAs, Co3[Co(CN6)]2 (Co–Co) is the most effective PBA for HG from NaBH4 hydrolysis. Furthermore, Co–Co has a much lower Ea of 37.6 kJ/mol for HG from NaBH4 hydrolysis in comparison to Ea values by other reported catalysts. Besides, HG by Co–Co could be optimized in the presence of 5% NaOH concentration, which leads to an even lower Ea of 28.6 kJ/mol. Co–Co is also reusable and stable for multiple cycles of HG. These features reveal that Co-containing PBAs can be a promising heterogeneous catalyst to facilitate HG from NaBH4 hydrolysis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Behling R, Chatel G, Valange S (2017) Sonochemical oxidation of vanillyl alcohol to vanillin in the presence of a cobalt oxide catalyst under mild conditions. Ultrason Sonochem 36:27–35. https://doi.org/10.1016/j.ultsonch.2016.11.015

    CAS  Article  PubMed  Google Scholar 

  2. Bozkurt G, Özer A, Yurtcan AB (2018) Hydrogen generation from sodium borohydride with Ni and Co based catalysts supported on Co3O4. Int J Hydrogen Energy 43:22205–22214. https://doi.org/10.1016/j.ijhydene.2018.10.106

    CAS  Article  Google Scholar 

  3. Chamoun R, Demirci UB, Zaatar Y, Khoury A, Miele P (2010) Co-alpha Al2O3-Cu as shaped catalyst in NaBH4 hydrolysis. Int J Hydrogen Energ 35:6583–6591. https://doi.org/10.1016/j.ijhydene.2010.04.107

    CAS  Article  Google Scholar 

  4. Chen W, Ouyang LZ, Liu JW, Yao XD, Wang H, Liu ZW, Zhu M (2017) Hydrolysis and regeneration of sodium borohydride (NaBH4)—a combination of hydrogen production and storage. J Power Sources 359:400–407. https://doi.org/10.1016/j.jpowsour.2017.05.075

    CAS  Article  Google Scholar 

  5. Cheng J et al (2015) Highly active nanoporous Co-B-TiO2 framework for hydrolysis of NaBH4. Ceram Int 41:899–905. https://doi.org/10.1016/j.ceramint.2014.09.007

    CAS  Article  Google Scholar 

  6. Demirci UB, Miele P (2009) Sodium borohydride versus ammonia borane, in hydrogen storage and direct fuel cell applications. Energy Environ Sci 2:627–637. https://doi.org/10.1039/b900595a

    CAS  Article  Google Scholar 

  7. Ding XL, Yuan XX, Jia C, Ma ZF (2010) Hydrogen generation from catalytic hydrolysis of sodium borohydride solution using Cobalt-Copper-Boride (Co-Cu-B) catalysts. Int J Hydrogen Energy 35:11077–11084. https://doi.org/10.1016/j.ijhydene.2010.07.030

    CAS  Article  Google Scholar 

  8. Itaya K, Uchida I, Neff VD (1986) Electrochemistry of polynuclear transition-metal cyanides—Prussian blue and its analogs accounts. Chem Res 19:162–168. https://doi.org/10.1021/ar00126a001

    CAS  Article  Google Scholar 

  9. Jacobson MZ, Colella WG, Golden DM (2005) Cleaning the air and improving health with hydrogen fuel-cell vehicles. Science 308:1901–1905. https://doi.org/10.1126/science.1109157

    CAS  Article  PubMed  Google Scholar 

  10. Jeong SU et al (2005) A study on hydrogen generation from NaBH4 solution using the high-performance Co-B catalyst. J Power Sources 144:129–134. https://doi.org/10.1016/j.jpowsour.2004.12.046

    CAS  Article  Google Scholar 

  11. Kaye SS, Long JR (2005) Hydrogen storage in the dehydrated Prussian blue analogues M-3[Co(CN)(6)](2) (M = Mn, Fe Co, Ni, Cu, Zn). J Am Chem Soc 127:6506–6507. https://doi.org/10.1021/ja051168t

    CAS  Article  PubMed  Google Scholar 

  12. Lai HK, Chou YZ, Lee MH, Lin KYA (2018) Coordination polymer-derived cobalt nanoparticle-embedded carbon nanocomposite as a magnetic multi-functional catalyst for energy generation and biomass conversion. Chem Eng J 332:717–726. https://doi.org/10.1016/j.cej.2017.09.098

    CAS  Article  Google Scholar 

  13. Larichev YV, Netskina OV, Komova OV, Simagina VI (2010) Comparative XPS study of Rh/Al(2)O(3) and Rh/TiO(2) as catalysts for NaBH(4) hydrolysis. Int J Hydrogen Energy 35:6501–6507. https://doi.org/10.1016/j.ijhydene.2010.04.048

    CAS  Article  Google Scholar 

  14. Liang JY, Li YL, Huang YQ, Yang JY, Tang HL, Wei ZD, Shen PK (2008) Sodium borohydride hydrolysis on highly efficient Co-B/Pd catalysts. Int J Hydrogen Energy 33:4048–4054. https://doi.org/10.1016/j.ijhydene.2008.05.082

    CAS  Article  Google Scholar 

  15. Lin KYA, Chang HA (2016) Efficient hydrogen production from NaBH4 hydrolysis catalyzed by a magnetic cobalt/carbon composite derived from a zeolitic imidazolate framework. Chem Eng J 296:243–251. https://doi.org/10.1016/j.cej.2016.03.115

    CAS  Article  Google Scholar 

  16. Lin KYA, Chen BJ, Chen CK (2016) Evaluating Prussian blue analogues M-3(II)[M-III(CN)(6)](2) (M-II = Co, Cu, Fe, Mn, Ni; M-III = Co, Fe) as activators for peroxymonosulfate in water. Rsc Adv 6:92923–92933. https://doi.org/10.1039/c6ra16011e

    CAS  Article  Google Scholar 

  17. Liu BH, Li ZP (2009) A review: hydrogen generation from borohydride hydrolysis reaction. J Power Sources 187:527–534. https://doi.org/10.1016/j.jpowsour.2008.11.032

    CAS  Article  Google Scholar 

  18. Liu ZL, Guo B, Chan SH, Tang EH, Hong L (2008) Pt and Ru dispersed on LiCoO(2) for hydrogen generation from sodium borohydride solutions. J Power Sources 176:306–311. https://doi.org/10.1016/j.jpowsour.2007.09.114

    CAS  Article  Google Scholar 

  19. Liu CH, Chen BH, Hsueh CL, Ku JR, Jen MS, Tsau F (2009) Hydrogen generation from hydrolysis of sodium borohydride using Ni-Ru nanocomposite as catalysts. Int J Hydrogen Energy 34:2153–2163. https://doi.org/10.1016/j.ijhydene.2008.12.059

    CAS  Article  Google Scholar 

  20. Lu AL, Chen YZ, Jin JR, Yue GH, Peng DL (2012) CoO nanocrystals as a highly active catalyst for the generation of hydrogen from hydrolysis of sodium borohydride. J Power Sources 220:391–398. https://doi.org/10.1016/j.jpowsour.2012.08.010

    CAS  Article  Google Scholar 

  21. Mao M, Chen Q, Wu J, Fan G (2020) Anchoring and space-confinement effects to synthesize ultrasmall Pd nanoparticles for efficient ammonia borane hydrolysis. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2020.07.097

    Article  Google Scholar 

  22. Muhammad S et al (2012) Coal fly ash supported Co3O4 catalysts for phenol degradation using peroxymonosulfate. RSC Adv 2:5645–5650. https://doi.org/10.1039/C2RA20346D

    CAS  Article  Google Scholar 

  23. Ocon JD, Tuan TN, Yi YM, de Leon RL, Lee JK, Lee J (2013) Ultrafast and stable hydrogen generation from sodium borohydride in methanol and water over Fe-B nanoparticles. J Power Sources 243:444–450. https://doi.org/10.1016/j.jpowsour.2013.06.019

    CAS  Article  Google Scholar 

  24. Pena-Alonso R, Sicurelli A, Callone E, Carturan G, Raj R (2007) A picoscale catalyst for hydrogen generation from NaBH4 for fuel cells. J Power Sources 165:315–323. https://doi.org/10.1016/j.jpowsour.2006.12.043

    CAS  Article  Google Scholar 

  25. Pinto AMFR, Falcao DS, Silva RA, Rangel CM (2006) Hydrogen generation and storage from hydrolysis of sodium borohydride in batch reactors. Int J Hydrogen Energy 31:1341–1347. https://doi.org/10.1016/j.ijhydene.2005.11.015

    CAS  Article  Google Scholar 

  26. Torad NL, Hu M, Imura M, Naito M, Yamauchi Y (2012) Large Cs adsorption capability of nanostructured Prussian Blue particles with high accessible surface areas. J Mater Chem 22:18261–18267. https://doi.org/10.1039/c2jm32805d

    CAS  Article  Google Scholar 

  27. Tuan DD, Lin K-YA (2018a) Ruthenium supported on ZIF-67 as an enhanced catalyst for hydrogen generation from hydrolysis of sodium borohydride. Chem Eng J 351:48–55. https://doi.org/10.1016/j.cej.2018.06.082

    CAS  Article  Google Scholar 

  28. Tuan DD, Lin K-YA (2018b) ZIF-67-derived Co3O4 rhombic dodecahedron as an efficient non-noble-metal catalyst for hydrogen generation from borohydride hydrolysis. J Taiwan Inst Chem Eng 91:274–280. https://doi.org/10.1016/j.jtice.2018.05.026

    CAS  Article  Google Scholar 

  29. Tuan DD, Lin KYA (2018c) ZIF-67-derived Co3O4 rhombic dodecahedron as an efficient non-noble-metal catalyst for hydrogen generation from borohydride hydrolysis. J Taiwan Inst Chem Eng 91:274–280. https://doi.org/10.1016/j.jtice.2018.05.026

    CAS  Article  Google Scholar 

  30. Vernekar AA, Bugde ST, Tilve S (2012) Sustainable hydrogen production by catalytic hydrolysis of alkaline sodium borohydride solution using recyclable Co-Co2B and Ni-Ni3B nanocomposites. Int J Hydrogen Energy 37:327–334. https://doi.org/10.1016/j.ijhydene.2011.09.033

    CAS  Article  Google Scholar 

  31. Wang MC, Ouyang LZ, Liu JW, Wang H, Zhu M (2017) Hydrogen generation from sodium borohydride hydrolysis accelerated by zinc chloride without catalyst: a kinetic study. J Alloy Compd 717:48–54. https://doi.org/10.1016/j.jallcom.2017.04.274

    CAS  Article  Google Scholar 

  32. Wang C et al (2020) Regulation of d-band electrons to enhance the activity of Co-based non-noble bimetal catalysts for hydrolysis of ammonia borane. ACS Sustain Chem Eng 8:8256–8266. https://doi.org/10.1021/acssuschemeng.0c01475

    CAS  Article  Google Scholar 

  33. Wei YS, Meng W, Wang Y, Gao YX, Qi KZ, Zhang K (2017) Fast hydrogen generation from NaBH4 hydrolysis catalyzed by nanostructured Co-Ni-B catalysts. Int J Hydrogen Energy 42:6072–6079. https://doi.org/10.1016/j.ijhydene.2016.11.134

    CAS  Article  Google Scholar 

  34. Wi-Afedzi T, Yeoh FY, Yang MT, Yip ACK, Lin KYA (2019) A comparative study of hexacyanoferrate-based Prussian blue analogue nanocrystals for catalytic reduction of 4-nitrophenol to 4-aminophenol. Sep Purif Technol 218:138–145. https://doi.org/10.1016/j.seppur.2019.02.047

    CAS  Article  Google Scholar 

  35. Xu DY, Dai P, Liu XM, Cao CQ, Guo QJ (2008) Carbon-supported cobalt catalyst for hydrogen generation from alkaline sodium borohydride solution. J Power Sources 182:616–620. https://doi.org/10.1016/j.jpowsour.2008.04.018

    CAS  Article  Google Scholar 

  36. Ye W, Zhang H, Xu D, Ma L, Yi B (2007a) Hydrogen generation utilizing alkaline sodium borohydride solution and supported cobalt catalyst. J Power Sources 164:544–548. https://doi.org/10.1016/j.jpowsour.2006.09.114

    CAS  Article  Google Scholar 

  37. Yuan XX, Jia C, Ding XL, Ma ZF (2012) Effects of heat-treatment temperature on properties of Cobalt-Manganese-Boride as efficient catalyst toward hydrolysis of alkaline sodium borohydride solution. Int J Hydrogen Energy 37:995–1001. https://doi.org/10.1016/j.ijhydene.2011.03.064

    CAS  Article  Google Scholar 

  38. Zhang L, Wu HB, Lou XW (2013) Metal-organic-frameworks-derived general formation of hollow structures with high complexity. J Am Chem Soc 135:10664–10672. https://doi.org/10.1021/ja401727n

    CAS  Article  PubMed  Google Scholar 

  39. Zhang X, Zhang Q, Xu B, Liu X, Zhang K, Fan G, Jiang W (2020) Efficient Hydrogen generation from the NaBH4 hydrolysis by cobalt-based catalysts: positive roles of sulfur-containing salts. ACS Appl Mater Interfaces 12:9376–9386. https://doi.org/10.1021/acsami.9b22645

    CAS  Article  PubMed  Google Scholar 

  40. Zhu J, Li R, Niu WL, Wu YJ, Gou XL (2012) Facile hydrogen generation using colloidal carbon supported cobalt to catalyze hydrolysis of sodium borohydride. J Power Sources 211:33–39. https://doi.org/10.1016/j.jpowsour.2012.03.051

    CAS  Article  Google Scholar 

  41. Zhu J, Li R, Niu W, Wu Y, Gou X (2013a) Fast hydrogen generation from NaBH4 hydrolysis catalyzed by carbon aerogels supported cobalt nanoparticles. Int J Hydrogen Energy 38:10864–10870. https://doi.org/10.1016/j.ijhydene.2013.01.150

    CAS  Article  Google Scholar 

  42. Zhu J, Li R, Niu WL, Wu YJ, Gou XL (2013b) Fast hydrogen generation from NaBH4 hydrolysis catalyzed by carbon aerogels supported cobalt nanoparticles. Int J Hydrogen Energy 38:10864–10870. https://doi.org/10.1016/j.ijhydene.2013.01.150

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yi-Feng Lin or Kun-Yi Andrew Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tuan, D.D., Kwon, E., Lin, JY. et al. Prussian blue analogues as heterogeneous catalysts for hydrogen generation from hydrolysis of sodium borohydride: a comparative study. Chem. Pap. 75, 779–788 (2021). https://doi.org/10.1007/s11696-020-01326-8

Download citation

Keywords

  • Prussian blue analogues
  • Mofs
  • H2
  • Sodium borohydride
  • Catalytic hydrolysis