Skip to main content

Sonochemical synthesis, crystal structure, and DFT calculation of an innovative nanosized Pb(II)-azido metal–organic coordination polymer as a precursor for preparation of PbO nanorod

Abstract

A sonochemical synthesis was performed to synthesize nanosheets of an innovative lead (II) metal–organic coordination polymer (CP) [(PbN3Q)2]n (1) (Q = 8-hydroxyquinolinate). For precise characterization, scanning electron microscopy, elemental analysis, IR spectroscopy, X-ray powder diffraction, and single-crystal X-ray diffraction scrutiny were conducted. The X-ray structural examination indicated that 1 was a 1D chain with the two neighboring Pb(II) centers bridged together by two O atoms from two Q ligands and two N3 using their two terminal N atoms. Pb(II) had a coordination number of 7 with an asymmetrical coordination geometry. The contiguous chains were linked by the ππ interactions with the aromatic circles of Q from the chains adjacent to each other. Therefore, these weak interactions facilitated the construction of a 3D metal–organic CP using the basic 1D building block. Density functional theory was used to optimize the title complex structure. The computed natural bond orbital burdens suggested that its ascription to the Pb…Pb contacts in the chains may have been attributed to the scant positive burden in the lead (II) ions. In summary, PbO nonorods were simply synthesized by thermolysis of 1 at 180 °C using oleic acid as the surfactant.

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Akhbari K, Beheshti S, Morsali A, Yilmaz VT, Büyükgüngör O (2014) Holodirected coordination sphere around lead (II) in three-dimensional polymeric structure; new precursor for preparation of lead oxide sulfate nano-structures. J Mol Struct 1074:279–283

    CAS  Google Scholar 

  2. Akhbari K, Band Bahman N, Morsali A, Retailleau P (2016) The effect of thermolysis temperatures of two silver (I) supramolecular polymers on the formation of silver nanostructures. J Iran Chem Soc 13:165–169

    CAS  Google Scholar 

  3. Bang JH, Suslick KS (2010) Applications of ultrasound to the synthesis of nanostructured materials. Adv Mater 22:1039–1059

    CAS  PubMed  Google Scholar 

  4. Basiri S, Mehdinia A, Jabbari A (2017) Biologically green synthesized silver nanoparticles as a facile and rapid label-free colorimetric probe for determination of Cu2+ in water samples. Spectrochim Acta Part A 171(2017):297–304

    CAS  Google Scholar 

  5. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648

    CAS  Google Scholar 

  6. Brandenburg K, Putz H (2011) DIAMOND, Crystal and Molecular Structure Visualization, Release 3.2 g. Crystal Impact GbR, Bonn

    Google Scholar 

  7. Chen KC, Wang CW, Lee YI, Liu HG (2011) Nanoplates and nanostars of β-PbO formed at the air/water interface. Colloids Surf A 373:124–129

    CAS  Google Scholar 

  8. Chen D, Zhao J, Zhang P, Dai S (2019) Mechanochemical synthesis of metal–organic frameworks. Polyhedron 162:59–64

    CAS  Google Scholar 

  9. Dhakshinamoorthy A, Garcia H (2014) Metal–organic frameworks as solid catalysts for the synthesis of nitrogen-containing heterocycles. Chem Soc Rev 43:5750–5765

    CAS  PubMed  Google Scholar 

  10. Dhand V, Soumya L, Bharadwaj S, Chakra S, Bhatt D, Sreedha B (2016) Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Mater Sci Eng C 58:36–43

    CAS  Google Scholar 

  11. Diffraction Oxford (2003) CrysAlis RED and CrysAlis CCD software (Ver.1.171.32.5). Oxford Diffraction Ltd., Abingdon

    Google Scholar 

  12. Du DY, Qin JS, Li SL, Su ZM, Lan YQ (2014) Recent advances in porous polyoxometalate-based metal-organic framework materials. Chem Soc Rev 43:4615–4632

    CAS  PubMed  Google Scholar 

  13. Fard-Jahromi MJS, Morsali A (2010) Sonochemical synthesis of nanoscale mixed-ligands lead(II) coordination polymers as precursors for preparation of Pb(2)(SO(4))O and PbO nanoparticles; thermal, structural and X-ray powder diffraction studies. Ultrason Sonochem 17:435–440

    CAS  PubMed  Google Scholar 

  14. Foresman JB, Frisch AE (1996) Exploring chemistry with electronic structure methods, 2nd edn. Gaussian Inc., Pittsburgh

    Google Scholar 

  15. Frisch MJ et al (1998) GAUSSIAN 98, Revision A.9. Gaussian Inc., Pittsburgh

    Google Scholar 

  16. Ganguly S, Das P, Bose M, Das TK, Mondal S, Das AK, Das NC (2017) Sonochemical green reduction to prepare Ag nanoparticles decorated graphene sheets for catalytic performance and antibacterial application. Ultrason Sonochem 39:577–588

    CAS  PubMed  Google Scholar 

  17. Gautier C, Muller MC, Averous M (1999) Study of PbSe layer oxidation and oxide dissolution. Appl Surf Sci 141:157–163

    CAS  Google Scholar 

  18. Han SD, Zhao JP, Liu SJ, Bu XH (2015) Hydro (solvo) thermal synthetic strategy towards azido/formato-mediated molecular magnetic materials. Coord Chem Rev 289:32–48

    Google Scholar 

  19. Hanifehpour Y, Mirtamizdoust B, Morsali A, Joo SW (2015a) Sonochemical syntheses of binuclear lead(II)-azido supramolecule with ligand 3,4,7,8-tetramethyl-1,10-phenanthroline as precursor for preparation of lead(II) oxide nanoparticles. Ultrason Sonochem 23:275–281

    CAS  PubMed  Google Scholar 

  20. Hanifehpour Y, Safarifard V, Morsali A, Mirtamizdoust B, Joo SW (2015b) Sonochemical syntheses of two new flower-like nano-scale high coordinated lead(II) supramolecular coordination polymers. Ultrason Sonochem 23:282–288

    CAS  PubMed  Google Scholar 

  21. Hanifehpour Y, Mirtamizdoust B, Morsali A, Joo SW (2016) Ultrasound-assisted fabrication of a new nano-rods 3D copper(II)-organic coordination supramolecular compound. Ultrason Sonochem 31:201–205

    CAS  PubMed  Google Scholar 

  22. Hanifehpour Y, Morsali A, Soltani B, Mirtamizdoust B, Joo SW (2017) Ultrasound-assisted fabrication of a novel nickel(II)-bis-pyrazolyl borate two-nuclear discrete nano-structured coordination compound. Ultrason Sonochem 34:519–524

    CAS  PubMed  Google Scholar 

  23. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270

    CAS  Google Scholar 

  24. Hazrati Z, Akhbari K, Phuruangrat A (2017) The effects of altering reaction conditions in green sonochemical synthesis of a thallium (I) coordination polymer and in achieving to different morphologies of thallium (III) oxide nanostructures via solid-state process. Ultrason Sonochem 39:662–668

    CAS  PubMed  Google Scholar 

  25. Hwang J, Walczak R, Oschatz M, Tarakina NV, Schmidt BV (2019) Micro-blooming: hierarchically porous nitrogen-doped carbon flowers derived from metal–organic mesocrystals. Small 37:1901986

    Google Scholar 

  26. Hwang J, Ejsmont A, Freund R, Goscianska J, Schmidt BV, Wuttke S (2020) Controlling the morphology of metal–organic frameworks and porous carbon materials: metal oxides as primary architecture-directing agents. Chem Soc Rev. https://doi.org/10.1039/C9CS00871C

    Article  PubMed  Google Scholar 

  27. Iram S, Imran M, Kanwal F, Latif S, Iqbal Z, Stammler HG (2018) Lead-based organic frameworks (Pb-MOFs): structural, luminescence and adsorption aspects. ChemistrySelect 3(37):10443–10449

    CAS  Google Scholar 

  28. Jia B, Gao L (2006) Synthesis and characterization of single crystalline PbO nanorods via a facile hydrothermal method. Mater Chem Phys 100(2–3):351–354

    CAS  Google Scholar 

  29. Kim CR, Uemura T, Kitagawa S (2016) Inorganic nanoparticles in porous coordination polymers. Chem Soc Rev 45:3828–3845

    CAS  PubMed  Google Scholar 

  30. Klimakow M, Klobes P, Thünemann AF, Rademann K, Emmerling F (2010) Mechanochemical synthesis of metal–organic frameworks: a fast and facile approach toward quantitative yields and high specific surface areas. Chem Mater 22(18):5216–5221

    CAS  Google Scholar 

  31. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785

    CAS  Google Scholar 

  32. Lin ZJ, Lu J, Hong M, Cao R (2014) Metal–organic frameworks based on flexible ligands (FL-MOFs): structures and applications. Chem Soc Rev 43:5867–5895

    CAS  PubMed  Google Scholar 

  33. Liu J, Chen L, Cui H, Zhang J, Zhang L, Su CY (2014) Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem Soc Rev 43(2014):6011–6061

    CAS  PubMed  Google Scholar 

  34. Mercury 2.4, Copyright Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, UK, 2001–2010

  35. Mirtamizdoust B, Bieńko D, Hanifehpour Y, Tiekink ERT, Yilmaz VT, Talemi P, Joo SW (2016a) Preparation of a novel nano-scale lead (II) zig-zag metal–organic coordination polymer with ultrasonic assistance: synthesis, crystal structure, thermal properties, and nbo Analysis of [Pb(μ-2-pinh)N3 H2O]n. J Inorg Organomet Polym 26:819–828

    CAS  Google Scholar 

  36. Mirtamizdoust B, Ghaedi M, Hanifehpour Y, Mague GT, Joo SW (2016b) Synthesis, structural characterization, thermal analysis, and DFT calculation of a novel zinc (II)-trifluoro-β-diketonate 3D supramolecular nano organic-inorganic compound with 1,3,5-triazine derivative. Mater Chem Phys 182:101–109

    CAS  Google Scholar 

  37. Mirtamizdoust B, Travnicek Z, Hanifehpour Y, Talemi P, Hammud H, Joo SW (2017) Synthesis and characterization of nano-peanuts of lead(II) coordination polymer [Pb(qcnh)(NO3)2]n with ultrasonic assistance: a new precursor for the preparation of pure-phase nano-sized PbO. Ultrason Sonochem 34:255–261

    CAS  PubMed  Google Scholar 

  38. Moeinian M, Akhbari A, Kawata S, Ishikawata R (2016) Solid state conversion of a double helix thallium (i) coordination polymer to a corrugated tape silver (i) polymer. RSC Adv 6:82447–82449

    CAS  Google Scholar 

  39. Mojtabazadeh F, Mirtamizdoust B, Morsali A, Talemi P (2017) Sonochemical synthesis and structural determination of novel the nano-card house Cu(II) metal-organic coordination system. Ultrason Sonochem 35:226–232

    Google Scholar 

  40. Mojtabazadeh F, Mirtamizdoust B, Morsali A, Talemi P (2018) Ultrasonic-assisted synthesis and the structural characterization of novel the zig-zag Cd(II) metal-organic polymer and their nanostructures. Ultrason Sonochem 42:134–140

    Google Scholar 

  41. Noori Y, Akhbari K (2017) Post-synthetic ion-exchange process in nanoporous metal–organic frameworks; an effective way for modulating their structures and properties. RSC Adv 7:1782–1808

    CAS  Google Scholar 

  42. Shahangi Shirazi F, Akhbari K (2016) Sonochemical procedures; the main synthetic method for synthesis of coinage metal ion supramolecular polymer nano structures. Ultrason Sonochem 31:51–61

    CAS  PubMed  Google Scholar 

  43. Sharma RP, Kumar S, Venugopalan P, Aree TH, Starynowicz P (2016) Unusual coordination modes of ligand 2-chloro-5-nitrobenzene sulfonate: synthesis, spectroscopic characterization, thermal and X-ray structural studies of metal 2-chloro-5-nitrobenzene sulfonate complexes, metal = Tl(I), Cu(II), Ag(I) and Pb(II). J Mol Struct 1107:47–56

    CAS  Google Scholar 

  44. Sheldrick GM (2008) A short history of SHELX. Acta Cryst A64:112–122

    Google Scholar 

  45. Wang C, Zhang T, Lin W (2012) Rational synthesis of noncentrosymmetric metal–organic frameworks for second-order nonlinear optics. Chem Rev 112:1084–1104

    CAS  PubMed  Google Scholar 

  46. Wu YP, Li DS, Fu F, Dong WW, Tang L, Wang YY (2010) 3D PbII-coordination framework based on rod-shaped Pb–O–Pb SBUs defining a new (4, 5)-connected net topology. Inorg Chem Commun 13(9):1005–1008

    CAS  Google Scholar 

  47. Yan XW, Haji-Hasani E, Morsali A (2016) Syntheses and structural characterization of two new nanostructured Bi(III) supramolecular polymers via sonochemical method. Ultrason Sonochem 31:129–134

    CAS  PubMed  Google Scholar 

  48. Yang Q, Zhao JP, Hu BW, Zhang XF, Bu XH (2010) New Manganese (II) azido coordination polymers with nicotinic/isonicotinic acids as coligands: synthesis, structure, and magnetic properties. Inorg Chem 49(8):3746–3751

    CAS  PubMed  Google Scholar 

  49. Yang YQ, Yang J, Kan WQ, Yang Y, Guo J, Ma JF (2013) A series of 1D, 2D, and 3D coordination polymers based on flexible 3-carboxy-1-carboxymethyl-2-oxidopyridinium and different N-donor ligands–syntheses, structures, and luminescent properties. Eur J Inorg Chem 2013:280–292

    CAS  Google Scholar 

  50. Yi FY, Chen D, Wu MK, Han L, Jiang HL (2016) Chemical sensors based on metal–organic frameworks. ChemPlusChem 81:675–690

    CAS  PubMed  Google Scholar 

  51. Younk EH, Kunz AB (1997) An ab initio investigation of the electronic structure of lithium azide (LiN3), sodium azide (NaN3), and lead azide [Pb(N3)2]. Int J Quantum Chem 63:615

    CAS  Google Scholar 

  52. Yousefi R, Sheini FJ, Sa A, Cheraghizade M (2015) Growth and characterization of PbO nanorods grown using facile oxidation of lead sheet. Sains Malays 44(2):291–294

    CAS  Google Scholar 

  53. Zeng YF, Liu FC, Zhao JP, Cai S, Bu XH, Ribas J (2006) An azido–metal–isonicotinate complex showing long-range ordered ferromagnetic interaction: synthesis, structure and magnetic properties. Chem Commun 21:2227–2229

    Google Scholar 

  54. Zeng L, Guo X, He C, Duan C (2016) Metal–organic frameworks: versatile materials for heterogeneous photocatalysis. ACS Catal 6:7935–7947

    CAS  Google Scholar 

  55. Zhang X, Hou L, Liu B, Cui L, Wang YY, Wu B (2013) Syntheses, structures, and luminescent properties of six new zinc (II) coordination polymers constructed by flexible tetracarboxylate and various pyridine ligands. Cryst Growth Des 13:3177–3187

    CAS  Google Scholar 

  56. Zhang X, Zhang R, Jin Y, Li T (2019) Two PbII-based coordination polymers based on 5-aminonicotinic acid and 5-hydroxynicotinic acid for Knoevenagel condensation reaction and luminescent sensor. J Solid State Chem 278:120927

    CAS  Google Scholar 

  57. Zingg DS, Hercules DM (1978) Electron spectroscopy for chemical analysis studies of lead sulfide oxidation. J Phys Chem 82:1992–1995

    CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Grant NRF-2019R1A5A8080290 of the National Research Foundation of Korea.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Younes Hanifehpour, Babak Mirtamizdoust or Sang Woo Joo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 156 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hanifehpour, Y., Mirtamizdoust, B., Ahmadi, H. et al. Sonochemical synthesis, crystal structure, and DFT calculation of an innovative nanosized Pb(II)-azido metal–organic coordination polymer as a precursor for preparation of PbO nanorod. Chem. Pap. 74, 3651–3660 (2020). https://doi.org/10.1007/s11696-020-01193-3

Download citation

Keywords

  • Pb(II) nanopolymer
  • Sonochemical
  • Nanomorphology
  • Structural determination
  • DFT
  • NBO