Skip to main content

Advertisement

Log in

TMP-based hyperbranched polyurethane elastomer (HBPUE) packaging material applied to anodic bonding

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In this work, hyperbranched polyurethane elastomer (HBPUE) electrolyte and aluminum foil (Al) were joined together by anodic bonding. It provides a possibility for packaging of flexible devices to use anodic bonding. The HBPUEs were designed and prepared via prepolymerization method cured at room temperature using polypropylene glycol (PPG), toluene-2,4-diisocyanate(TDI), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and the varying ratios of trimethylolpropane (TMP)/1,4-butanediol (BDO). All HBPUEs prepared exhibited low glass transition temperature (Tg) and good thermal stability. The highly branched structures increase the proportion of amorphous phase of HBPUEs, resulting in a high ionic conductivity with a highest value of 2.38 × 10−4 S cm−1 at 70 °C when adding TMP and BDO at the ratio of 0.45:0.45 (HBPUE3). There are no obvious diffraction peaks of the LiTFSI in the XRD patterns, indicating that LiTFSI was dissolved in polyurethane matrix completely. XRD results show that the structures of PEO-PUEs are amorphous. The HBPUEs prepared have good mechanical properties that can be used as packaging material. After bonded, the microstructures of the bonded interface between HBPUE and Al with a clear intermediate bonding layer could be observed by the cross-sectional scanning electron microscopy (SEM) images, and the elements diffused were also detected by the energy-dispersive spectrometer (EDS), indicating that the HBPUEs and Al were bonded together successfully. The maximum tensile strength for HBPUE3/Al was up to 1.15 MPa. All results demonstrated that the HBPUEs prepared would be a promising packaging material for flexible devices applied to anodic bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

Download references

Acknowledgements

The authors are grateful to the “the National Natural Science Foundation of China (51875384, 61705158), Shanxi Province Natural Science Foundation (201801D221102, 201801D121085) and Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (201802111, 2019L0302).”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cuirong Liu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Zhang, W., Yin, X. et al. TMP-based hyperbranched polyurethane elastomer (HBPUE) packaging material applied to anodic bonding. Chem. Pap. 74, 3975–3986 (2020). https://doi.org/10.1007/s11696-020-01190-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-020-01190-6

Keywords

Navigation