Investigation of system complexity and addition of vitamin C on calcium oxalate precipitation

Abstract

In this study, three different precipitation systems of increasing complexities were used to study formation of calcium oxalate hydrates under hyperoxaluria conditions. For this purpose, three different precipitation systems have been studied: (a) a simple system (a system containing constituent ions), (b) NaCl system (a system consisted of constituent ions and 0.3 mol dm−3 NaCl), and (c) artificial urine system (a system containing constituent ions that are of the type and quantity mimicking real urine) at initial pH (pHi = 6.5) value, with and without added vitamin C. The vitamin C has been extensively tested for its ability to inhibit or promote the process of calcium oxalate precipitation or the formation of specific hydrate modification. In order to determine whether calcium oxalate crystallization could be affected by the presence of vitamin C in precipitation systems with increasing complexity, different amounts of vitamin C (in the mass range from 100 to 1000 mg) were added to the precipitation systems. The results indicated that in all investigated simple systems, calcium oxalate monohydrate (COM) is observed to be dominant precipitated hydrate phase, while in NaCl systems precipitation of COM and calcium oxalate trihydrate (COT) mixture occurrs, except in reference NaCl system (without addition of vitamin C) where COM precipitated exclusively. In reference artificial urine system, calcium oxalate dihydrate was observed to be dominant precipitated hydrate phase, while addition of vitamin C promoted precipitation of COT. Significant differences are mainly observed in crystal morphology and the content of individual hydrate phases. Electrochemical measurements have indicated the existence of electrostatic interactions between seed crystals and ascorbic acid, even at low masses of added vitamin C.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Alelign T, Petros B (2018) Kidney stone disease: an update on current concepts. Adv Urol 4:1–12. https://doi.org/10.1155/2018/3068365

    Article  Google Scholar 

  2. Brečević LJ, Kralj D (2010) Factors influencing the formation of calcium oxalate hydrates in vitro. Med Vjesn 42(3–4):127–136

    Google Scholar 

  3. Brown P, Ackermann D, Finlayson B (1989) Calcium oxalate dihydrate (weddellite) precipitation. J Cryst Growth 98(3):285–292. https://doi.org/10.1016/0022-0248(89)90143-7

    CAS  Article  Google Scholar 

  4. Conti C, Casati M, Colombo C, Realini M, Brambilla L, Zerbi G (2014) Phase transformation of calcium oxalate dihydrate–monohydrate: effects of relative humidity and new spectroscopic data. Spectrochim Acta Part A Mol Biomol Spectrosc 128:413–419. https://doi.org/10.1016/j.saa.2014.02.182

    CAS  Article  Google Scholar 

  5. Curhan GC, Willett WC, Speizer FE, Stampfer MJ (1999) Intake of vitamins B6 and C and the risk of kidney stones in women. J Am Soc Nephrol 10:840–845

    CAS  PubMed  Google Scholar 

  6. Echigo T, Kimata M, Kyono A, Shmizu M, Hatta T (2005) Re-investigation of the crystal structure of whewellite [Ca(C2O4)·H2O] and the dehydration mechanism of caoxite [Ca(C2O4)·3H2O]. Mineral Mag 69:77–88. https://doi.org/10.1180/0026461056910235

    CAS  Article  Google Scholar 

  7. Ferraro PM, Curhan GC, Gambaro G, Taylor EN (2016) Total, dietary, and supplemental vitamin C intake and risk of incident kidney stones. Am J Kidney Dis 67:400–407. https://doi.org/10.1053/j.ajkd.2015.09.005

    CAS  Article  PubMed  Google Scholar 

  8. Fu L, Zheng Y-H, Fu Z-X (2015) Ascorbic acid amperometric sensor using a graphene-wrapped hierarchical TiO2 nanocomposite. Chem Pap 69:655–661. https://doi.org/10.1515/chempap-2015-0079

    CAS  Article  Google Scholar 

  9. Gasinska A, Gajewska D (2007) Tea and coffee as the main sources of oxalate in diets of patients with kidney oxalate stones. Rocz Panstw Zakl Hig 58(1):61–67

    CAS  PubMed  Google Scholar 

  10. Gerster H (1997) No contribution of ascorbic acid to renal calcium oxalate stones. Ann Nutr Metab 41(5):269–282. https://doi.org/10.1159/000177954

    CAS  Article  PubMed  Google Scholar 

  11. Harrison FE (2012) A critical review of vitamin C for the prevention of age-related cognitive decline and Alzheimer’s disease. J Alzheimers Dis 29:711–726. https://doi.org/10.3233/JAD-2012-111853

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Heijnen W, Jellinghaus W, Klee WE (1985) Calcium oxalate trihydrate in urinary calculi. Urol Res 13:281–283. https://doi.org/10.1007/BF00262657

    CAS  Article  PubMed  Google Scholar 

  13. Hess B, Ryall RL, Kavanagh JP, Khan SR, Kok DJ, Rodgers AL, Tiselius HG (2001) Methods for measuring crystallization in urolithiasis research: why, how and when? Eur Urol 40(2):220–230. https://doi.org/10.1159/000049776

    CAS  Article  PubMed  Google Scholar 

  14. Hickey S, Saul AW (2008) Vitamin C: the real story, the remarkable and controversial healing factor. Basic Health Publications ISBN-13: 9781591202233

  15. Hughes C, Dutton S, Truswell A (1981) High intakes of ascorbic acid and urinary oxalate. J Hum Nutr 35:274–280

    CAS  PubMed  Google Scholar 

  16. Ihli J, Wang Y-W, Cantaert B, Kim Y-Y, Green DC, Bomans PHH, Sommerdijk NAJM, Meldrum FC (2015) Precipitation of amorphous calcium oxalate in aqueous solution. Chem Mater 27:3999–4007. https://doi.org/10.1021/acs.chemmater.5b01642

    CAS  Article  Google Scholar 

  17. Kaloustian J, El-Moselhy TF, Portugal H (2003) Determination of calcium oxalate (mono- and dihydrate) in mixtures with magnesium ammonium phosphate or uric acid: the use of simultaneous thermal analysis in urinary calculi. Clin Chim Acta 334:117–129. https://doi.org/10.1016/S0009-8981(03)00228-6

    CAS  Article  PubMed  Google Scholar 

  18. Knight J, Madduma-Liyanage K, Mobley JA, Assimos DG, Holmes RP (2016) Ascorbic acid intake and oxalate synthesis. Urolithiasis 44(4):289–297. https://doi.org/10.1007/s00240-016-0868-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Kok DJ, Papapoulos SE, Blomen LJ, Bijvoet OL (1988) Modulation of calcium oxalate monohydrate crystallization kinetics in vitro. Kidney Int 34(3):346–350

    CAS  Article  Google Scholar 

  20. Laffite G, Leroy C, Bonhomme C, Bonhomme-Coury L, Letavernier E, Daudon M, Frochot V, Haymann JP, Rouzière S, Lucas IT, Bazin D, Babonneau F, Abou-Hassan A (2016) Calcium oxalate precipitation by diffusion using laminar microfluidics: toward a biomimetic model of pathological microcalcifications. Lab Chip 16:1157–1160. https://doi.org/10.1039/C6LC00197A

    CAS  Article  PubMed  Google Scholar 

  21. Levine M, Rumsey SC, Daruwala R, Park JB, Wang Y (1999) Criteria and recommendations for vitamin C intake. JAMA 281(15):1415–1423. https://doi.org/10.1001/jama.281.15.1415

    CAS  Article  PubMed  Google Scholar 

  22. Maurice-Estepa L, Levillain P, Lacour B, Daudon M (2000) Advantage of zero-crossing-point first-derivative spectrophotometry for the quantification of calcium oxalate crystalline phases by infrared spectrophotometry. Clin Chim Acta 298:1–11. https://doi.org/10.1016/s0009-8981(00)00224-2

    CAS  Article  PubMed  Google Scholar 

  23. Millan A (2001) Crystal growth shape of whewellite polymorphs: influence of structure distortions on crystal shape. Cryst Growth Des 1(3):245–254. https://doi.org/10.1021/cg0055530

    CAS  Article  Google Scholar 

  24. Neira-Carrillo A, Vásquez-Quitral P, Sánchez M, Vargas-Fernández A, Silva JF (2015) Control of calcium oxalate morphology through electrocrystallization as an electrochemical approach for preventing pathological disease. Ionics 21(11):3141–3149. https://doi.org/10.1007/s11581-015-1558-0

    CAS  Article  Google Scholar 

  25. Ngai KS, Tan WT, Zainal Z, Zawawi RM, Zidan M (2013) Voltammetry detection of ascorbic acid at glassy carbon electrode modified by single-walled carbon nanotube/zinc oxide. Int J Electrochem Sci 8:10557–10567

    CAS  Google Scholar 

  26. Noonan SC, Savage GP (1999) Oxalate content of foods and its effect on humans. Asia Pac J Clin Nutr 8:64–74. https://doi.org/10.1046/j.1440-6047.1999.00038.x

    CAS  Article  PubMed  Google Scholar 

  27. Ouyang JM (2006) Effect of temperature on growth and aggregation of calcium oxalate in presence of various carboxylic acids in silica gel systems. Mater Sci Eng, C 26:679–682. https://doi.org/10.1016/j.msec.2005.06.060

    CAS  Article  Google Scholar 

  28. Ouyang JM, Deng SP, Zhou N, Tieke B (2005) Effect of tartrates with various counterions on the precipitation of calcium oxalate in vesicle solutions. Colloids Surf A 256:21–27. https://doi.org/10.1016/j.colsurfa.2004.09.035

    CAS  Article  Google Scholar 

  29. Padayatty SJ, Sun AY, Chen Q, Espey MG, Drisko J, Levine M (2010) Vitamin C: intravenous use by complementary and alternative medicine practitioners and adverse effects. PLoS ONE 5(7):e11414. https://doi.org/10.1371/journal.pone.0011414

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Proietti S, Moscatello S, Famiani F, Battistelli A (2009) Increase of ascorbic acid content and nutritional quality in spinach leaves during physiological acclimation to low temperature. Plant Physiol Biochem 47(8):717–723. https://doi.org/10.1016/j.plaphy.2009.03.010

    CAS  Article  PubMed  Google Scholar 

  31. Rimer JD, Kolbach-Mandel AM, Ward MD, Wesson JA (2017) The role of macromolecules in the formation of kidney stones. Urolithiasis 45:57–74. https://doi.org/10.1007/s00240-016-0948-8

    CAS  Article  PubMed  Google Scholar 

  32. Robitaille L, Mamer OA, Miller WH, Levine M, Assouline S, Melnychuk D, Rousseau C, Lj H (2008) Oxalic acid excretion after intravenous ascorbic acid administration. Metabolism 58(2):263–269. https://doi.org/10.1016/j.metabol.2008.09.023

    CAS  Article  Google Scholar 

  33. Schaefer A, Bausch W (1979) Bedeutung der Spurenelementverteilung in Calciumoxalat-Harnsteinen. Fortschr Urol Nephrol 14:236–241

    Article  Google Scholar 

  34. Sheng X, Ward MD, Wesson JA (2003) Adhesion between molecules and calcium oxalate crystals: critical interactions in kidney stone formation. J Am Chem Soc 125:2854–2855. https://doi.org/10.1021/ja029575h

    CAS  Article  PubMed  Google Scholar 

  35. Škrtić D, Marković M, Komunjer L, Füredi-Milhofer H (1984) Precipitation of calcium oxalates from high ionic strength solutions: I. Kinetics of spontaneous precipitation of calcium oxalate trihydrate. J Cryst Growth 66(2):431–440. https://doi.org/10.1016/0022-0248(84)90227-6

    Article  Google Scholar 

  36. Stanković A, Šafranko S, Kontrec J, Njegić Džakula B, Lyons DM, Marković B, Kralj D (2019) Calcium oxalate precipitation in model systems mimicking the conditions of hyperoxaluria. Cryst Res Technol 54(6):1–11. https://doi.org/10.1002/crat.201800210

    CAS  Article  Google Scholar 

  37. Šter A, Šafranko S, Bilić K, Marković B, Kralj D (2018) The effect of hydrodynamic and thermodynamic factors and the addition of citric acid on the precipitation of calcium oxalate dihydrate. Urolithiasis 46(3):243–256. https://doi.org/10.1007/s00240-017-0991-0

    CAS  Article  PubMed  Google Scholar 

  38. Suliborska K, Baranowska M, Bartoszek A, Chrzanowski W, Namieśnik J (2019) Determination of antioxidant activity of vitamin C by voltammetric methods. In: Proceedings, vol 11, p 23. https://doi.org/10.3390/proceedings2019011023

  39. Sun XY, Ouyang JM, Liu AJ, Ding YM, Gan QZ (2015) Preparation, characterization, and in vitro cytotoxicity of COM and COD crystals with various sizes. Mater Sci Eng, C 57:147–156. https://doi.org/10.1016/j.msec.2015.07.032

    CAS  Article  Google Scholar 

  40. Sun Y, Ouyang JM, Xu M (2016) Synthesis, characterization, and cytotoxicity assay of calcium oxalate dihydrate crystals in various shapes. CrystEngComm 18:5463–5473. https://doi.org/10.1039/c6ce00697c

    CAS  Article  Google Scholar 

  41. Tajmir-Riahi HA (1990) Coordination chemistry of vitamin C. Part I. Interaction of l-ascorbic acid with alkaline earth metal ions in the crystalline solid and aqueous solution. J Inorg Biochem 40:181–188. https://doi.org/10.1016/0162-0134(90)80051-X

    CAS  Article  PubMed  Google Scholar 

  42. Thongboonkerd V, Semangoen T, Chutipongtanate S (2006) Factors determining types and morphologies of calcium oxalate crystals: molar concentrations, buffering, pH, stirring and temperature. Clin Chim Acta 367:120–131. https://doi.org/10.1016/j.cca.2005.11.033

    CAS  Article  PubMed  Google Scholar 

  43. Tolbert BM (1985) Metabolism and function of ascorbic acid and its metabolites. Int J Vitam Nutr Res Suppl 27:121–138

    CAS  PubMed  Google Scholar 

  44. Tunik L, Füredi-Milhofer H, Garti N (1998) Adsorption of sodium diisooctyl sulfosuccinate onto calcium oxalate crystals. Langmuir 14:3351–3355. https://doi.org/10.1021/la9708041

    CAS  Article  Google Scholar 

  45. Urivetzky M, Kessaris D, Smith AD (1992) Ascorbic acid overdosing: s risk factor for calcium oxalate nephrolithiasis. J Urol 147:1215–1218. https://doi.org/10.1016/s0022-5347(17)37521-3

    CAS  Article  PubMed  Google Scholar 

  46. Wandzilak T, D’Andre S, Davis P, Williams H (1994) Effect of high dose vitamin C on urinary oxalate levels. J Urol 151:834–837. https://doi.org/10.1016/s0022-5347(17)35100-5

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Silvija Šafranko.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stanković, A., Šafranko, S., Jurišić, K. et al. Investigation of system complexity and addition of vitamin C on calcium oxalate precipitation. Chem. Pap. 74, 3279–3291 (2020). https://doi.org/10.1007/s11696-020-01157-7

Download citation

Keywords

  • Calcium oxalate monohydrate
  • Calcium oxalate trihydrate
  • Vitamin C
  • Precipitation in vitro