Skip to main content

Advertisement

Log in

Piper anisum as a promising new source of bioactive metabolites

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Piper species are commonly used by indigenous communities to treat several gastrointestinal diseases. In China, they are also used as an active ingredient in formulae to treat cancer. The objective of the study was to perform a large-scale metabolite profiling analysis to identify bioactive compounds in Piper anisum. Antioxidant capacity was assessed by the DPPH assay and total phenolics were assessed by Folin–Ciocalteu’s method. Antimicrobial activity was assessed against several Gram-positive and Gram-negative bacteria, whereas cytotoxicity was assessed against tumor cell lines MCF-7, HCT116, HepG2 and HL-60, and non-tumor cell line MRC-5. The multiplatform metabolite profiling approach encompassed NMR, GC–MS and LC–MS analyses. P. anisum root extract showed the greatest antioxidant capacity and total phenolic content, followed by the stem and leaf extracts. P. anisum extracts showed a highly selective antimicrobial profile, being specifically active against C. albicans (MIC of 500 μg mL−1). Additionally, the root extract (50 μg mL−1) showed the highest cell inhibition percentages against tumor cell lines MCF-7 (59.5%), HCT116 (49.2%), and HepG2 (61.0%). Forty-eight metabolites were annotated by GC–MS and 27 by LC–MS. These included alkaloids, carbohydrates, fatty acids, hydrocarbons, organic acids, phenolic compounds, and terpenes. Taken together, these results showed that P. anisum root extract is a promising source of bioactive compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Afolabi OB, Oloyede OI, Agunbiade SO (2018) Inhibitory potentials of phenolic-rich extracts from Bridelia ferruginea on two key carbohydrate-metabolizing enzymes and Fe2 + -induced pancreatic oxidative stress. J Integr Med 16:192–198

    PubMed  Google Scholar 

  • Ansar Ahmed S, Gogal RM Jr, Walsh JE (1994) A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: an alternative to [3H]thymidine incorporation assay. J Immunol Methods 170:211–224

    CAS  Google Scholar 

  • Bauer R, Pröbstle A, Lotter H, Wagner-Redecker W, Matthiesen U (1996) Cyclooxygenase inhibitory constituents from Houttuynia cordata. Phytomedicine 2:305–308

    CAS  PubMed  Google Scholar 

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA 68:394–424

    PubMed  Google Scholar 

  • Brú J, Guzman JD (2016) Folk medicine, phytochemistry and pharmacological application of piper marginatum. Braz J Pharmacogn 26:767–779

    Google Scholar 

  • Chen YC, Chen JJ, Chang YL, Teng CM, Lin WY, Wu CC, Chen IS (2004) A new aristolactam alkaloid and anti-platelet aggregation constituents from Piper taiwanense. Planta Med 70:174–177

    CAS  PubMed  Google Scholar 

  • Chen Y, Chen Y, Shi Y, Ma C, Wang X, Li Y, Miao Y, Chen J, Li X (2016) Antitumor activity of Annona squamosa seed oil. J Ethnopharmacol 193:362–367

    CAS  PubMed  Google Scholar 

  • Christ JA, Sarnaglia-Junior VB, Barreto LM, Guimarães EF, Garbin ML, Carrijo TT (2016) The genus Piper (Piperaceae) in the Mata das Flores state park, Espírito Santo, Brazil. Rodriguesia 67:1031–1046

    Google Scholar 

  • Cox MC, Dan TD, Swain SM (2006) Emerging drugs to replace current leaders in first-line therapy for breast cancer. Expert Opin Emerg Drugs 11:489–501

    CAS  PubMed  Google Scholar 

  • Cüce M, Bekircan T, Laghari AH, Sökmen M, Sökmen A, Önay Uçar E, Kılıç AO (2017) Antioxidant phenolic constituents, antimicrobial and cytotoxic properties of Stachys annua L. From both natural resources and micropropagated plantlets. Indian J Tradit Knowl 16:407–416

    Google Scholar 

  • Cunha Lima ST, Rodrigues ED, Alves C, Merrigan TL, Melo T, Guedes MLS, Nascimento AF, Toralles MB (2012) The use of medicinal plants by an indigenous Pataxó community in NE Brazil. Revista Brasileira de Plantas Medicinais 14:84–91

    Google Scholar 

  • D’Sousa Costa C, Ribeiro P, Loureiro M, Simoes R, de Castro R, Fernandez L (2015) Phytochemical screening, antioxidant and antibacterial activities of extracts prepared from different tissues of  Schinus terebinthifolius  Raddi that occurs in the coast of Bahia, Brazil. Pharmacogn Mag 11:607–614

    Google Scholar 

  • da Silva JK, da Trindade R, Alves NS, Figueiredo PL, Maia JGS, Setzer WN (2017) Essential oils from Neotropical Piper Species and their biological activities. Int J Mol Sci 18:2571

    PubMed Central  Google Scholar 

  • Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15:7313–7352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dasyam N, Munkacsi AB, Fadzilah NH, Senanayake DS, O’Toole RF, Keyzers RA (2014) Identification and bioactivity of 3-epi-xestoaminol C isolated from the New Zealand brown alga Xiphophora chondrophylla. J Nat Prod 77:1519–1523

    CAS  PubMed  Google Scholar 

  • de Ávila JM, Dalcol II, Pereira AO, Santos EW, Ferraz A, Santos MZ, Mostardeiro MA, Morel AF (2018) Antimicrobial evaluation of erythrinan alkaloids from Erythrina cristagalli L. Med Chem [Shariqah (United Arab Emirates)] 14:784–790

    Google Scholar 

  • De Lima EJSP, Alves RG, D’Elia GMA, Da Anunciação TA, Silva VR, Santos LDS, Soares MBP, Cardozo NMD, Costa EV, Da Silva FMA, Koolen HHF, Bezerra DP (2018) Antitumor effect of the essential oil from the leaves of Croton matourensis Aubl. (Euphorbiaceae). Molecules 23:1–12

    Google Scholar 

  • De Oliveira Chaves MC, De Oliveira AH, De Oliveira Santos BV (2006) Aristolactams from Piper marginatum Jacq (Piperaceae). Biochem Syst Ecol 34:75–77

    Google Scholar 

  • Deborde C, Fontaine JX, Jacob D, Botana A, Nicaise V, Richard-Forget F, Lecomte S, Decourtil C, Hamade K, Mesnard F, Moing A, Molinié R (2019) Optimizing 1D 1H-NMR profiling of plant samples for high throughput analysis: extract preparation, standardization, automation and spectra processing. Metabolomics 15:28

    PubMed  PubMed Central  Google Scholar 

  • Desai SJ, Prabhu BR, Mulchandani NB (1988) Aristolactams and 4,5-dioxoaporphines from Piper longum. Phytochemistry 27:1511–1515

    CAS  Google Scholar 

  • Desai SJ, Chaturvedi R, Mulchandani NB (1990) Piperolactam D, a new aristolactam from indian piper species. J Nat Prod 53:496–497

    CAS  Google Scholar 

  • Diekema DJ, Messer SA, Brueggemann AB, Coffman SL, Doern GV, Herwaldt LA, Pfaller MA (2002) Epidemiology of candidemia: 3-year results from the emerging infections and the epidemiology of Iowa organisms study. J Clin Microbiol 40:1298–1302

    CAS  PubMed  PubMed Central  Google Scholar 

  • Đurđević S, Šavikin K, Živković J, Böhm V, Stanojković T, Damjanović A, Petrović S (2018) Antioxidant and cytotoxic activity of fatty oil isolated by supercritical fluid extraction from microwave pretreated seeds of wild growing Punica granatum L. J Supercrit Fluids 133:225–232

    Google Scholar 

  • Edmond MB, Wallace SE, McClish DK, Pfaller MA, Jones RN, Wenzel RP (1999) Nosocomial bloodstream infections in United States hospitals: a 3-year analysis. Clin Infect Dis 29:239–244

    CAS  PubMed  Google Scholar 

  • Ee GCL, Lim SK, Lim CM, Dzulkefly K (2008) Alkaloids and carboxylic acids from Piper nigrum. Asian J Chem 20:5931–5940

    CAS  Google Scholar 

  • Erik Olsen C, Dutt Tyagi O, Boll PM, Hussaini FA, Parmar VS, Sharma NK, Taneja P, Jain SC (1993) An aristolactam from Piper acutisleginum and revision of the structures of piperolactam B and D. Phytochemistry 33:518–520

    Google Scholar 

  • Fajriah S, Megawati Hudiyono S, Kosela S, Hanafi M (2017) Chemical constituents and potential cytotoxic activity of n- hexane fraction from Myristica fatua Houtt leaves C3—AIP Conference Proceedings. 1862

  • Gertsch J (2011) Botanical drugs, synergy, and network pharmacology: forth and back to intelligent mixtures. Planta Med 77:1086–1098

    CAS  PubMed  Google Scholar 

  • Goleniowski M, Bonfill M, Cusido R, Palazón J (2013) Phenolic acids. In: Ramawat K, Mérillon JM (eds) Natural products. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22144-6_64

    Chapter  Google Scholar 

  • Gu F, Wu G, Fang Y, Zhu H (2018) Nontargeted metabolomics for phenolic and polyhydroxy compounds profile of pepper (Piper nigrum L.) products based on LC-MS/MS analysis. Molecules 23:1985

    PubMed Central  Google Scholar 

  • Hu S, Yin J, Nie S, Wang J, Phillips GO, Xie M, Cui SW (2016) In vitro evaluation of the antioxidant activities of carbohydrates. Bioact Carbohydr Diet Fibre 7:19–27

    CAS  Google Scholar 

  • Ibrahim TA, El Dib RA, Al-Youssef HM, Amina M (2019) Chemical composition and antimicrobial and cytotoxic activities of Antidesm abunius L. Pak J Pharm Sci 32:153–163

    CAS  PubMed  Google Scholar 

  • Islam MT, Ali ES, Uddin SJ, Shaw S, Islam MA, Ahmed MI, Chandra Shill M, Karmakar UK, Yarla NS, Khan IN, Billah MM, Pieczynska MD, Zengin G, Malainer C, Nicoletti F, Gulei D, Berindan-Neagoe I, Apostolov A, Banach M, Yeung AWK, El-Demerdash A, Xiao J, Dey P, Yele S, Jóźwik A, Strzałkowska N, Marchewka J, Rengasamy KRR, Horbańczuk J, Kamal MA, Mubarak MS, Mishra SK, Shilpi JA, Atanasov AG (2018) Phytol: a review of biomedical activities. Food Chem Toxicol 121:82–94

    CAS  PubMed  Google Scholar 

  • Jong T-T, Jean M-Y (1993) Alkaloids from Houttuynia cordata. Jnl Chin Chem Soc 40:301–303

    CAS  Google Scholar 

  • Karak S, Das S, Biswas M, Choudhury A, Dutta M, Chaudhury K, De B (2019) Phytochemical composition, β-glucuronidase inhibition, and antioxidant properties of two fractions of Piper betle leaf aqueous extract. J Food Biochem 00:e13048. https://doi.org/10.1111/jfbc.13048

    Article  Google Scholar 

  • Karthikeyan SC, Velmurugan S, Donio MBS, Michaelbabu M, Citarasu T (2014) Studies on the antimicrobial potential and structural characterization of fatty acids extracted from Sydney rock oyster Saccostrea glomerata. Ann Clin Microbiol Antimicrob 13:332

    PubMed  PubMed Central  Google Scholar 

  • Kchaou W, Abbès F, Mansour RB, Blecker C, Attia H, Besbes S (2016) Phenolic profile, antibacterial and cytotoxic properties of second grade date extract from Tunisian cultivars (Phoenix dactylifera L.). Food Chem 194:1048–1055

    CAS  PubMed  Google Scholar 

  • Kim SK, Ryu SY, No J, Choi SU, Kim YS (2001) Cytotoxic alkaloids from Houttuynia cordata. Arch Pharmacal Res 24:518–521

    CAS  Google Scholar 

  • Kitahara T, Koyama N, Matsuda J, Aoyama Y, Hirakata Y, Kamihira S, Kohno S, Nakashima M, Sasaki H (2004) Antimicrobial activity of saturated fatty acids and fatty amines against methicillin-resistant Staphylococcus aureus. Biol Pharm Bull 27:1321–1326

    CAS  PubMed  Google Scholar 

  • Kumar V, Poonam AKP, Parmar VS (2003) Naturally occurring aristolactams, aristolochic acids and dioxoaporphines and their biological activities. Nat Product Rep 20:565–583

    CAS  Google Scholar 

  • Lang G, Mayhudin NA, Mitova MI, Sun L, Van Der Sar S, Blunt JW, Cole ALJ, Ellis G, Laatsch H, Munro MHG (2008) Evolving trends in the dereplication of natural product extracts: new methodology for rapid, small-scale investigation of natural product extracts. J Nat Prod 71:1595–1599

    CAS  PubMed  Google Scholar 

  • Levrier C, Sadowski MC, Nelson CC, Davis RA (2015) Cytotoxic C20 diterpenoid alkaloids from the Australian Endemic Rainforest Plant Anopterus macleayanus. J Nat Prod 78:2908–2916

    CAS  PubMed  Google Scholar 

  • Lim SM, Loh SP (2016) In vitro antioxidant capacities and antidiabetic properties of phenolic extracts from selected citrus peels. Int Food Res J 23:211–219

    CAS  Google Scholar 

  • Limmongkon A, Nopprang P, Chaikeandee P, Somboon T, Wongshaya P, Pilaisangsuree V (2018) LC-MS/MS profiles and interrelationships between the anti-inflammatory activity, total phenolic content and antioxidant potential of Kalasin 2 cultivar peanut sprout crude extract. Food Chem 239:569–578

    CAS  PubMed  Google Scholar 

  • Luís Â, Domingues F, Duarte AP (2016) Biological properties of plant-derived alkylresorcinols: mini-review. Mini-Rev Med Chem 16:851–854

    PubMed  Google Scholar 

  • Mandel S, Youdim MBH (2004) Catechin polyphenols: neurodegeneration and neuroprotection in neurodegenerative diseases. Free Radical Biol Med 37:304–317

    CAS  Google Scholar 

  • McGaw LJ, Jäger AK, Van Staden J (2002) Antibacterial effects of fatty acids and related compounds from plants. S Afr J Bot 68:417–423

    CAS  Google Scholar 

  • Merah S, Dahmane D, Krimat S, Metidji H, Nouasri A, Lamari L, Dob T (2018) Chemical analysis of phenolic compounds and determination of anti-oxidant, antimicrobial and cytotoxic activities of organic extracts of Pinus coulteri. Bangladesh J Pharmacol 13:120–129

    Google Scholar 

  • Mgbeahuruike EE, Yrjönen T, Vuorela H, Holm Y (2017) Bioactive compounds from medicinal plants: focus on Piper species. S Afr J Bot 112:54–69

    CAS  Google Scholar 

  • Milliken W, Albert B (1997) The use of medicinal plants by the Yanomami Indians of Brazil, Part II. Econ Bot 51:264–278

    Google Scholar 

  • Milroy MJ (2018) “Cancer statistics: global and national” Qual Cancer Care: survivorship before, during and after treatment. Springer, NY, pp 29–35

    Google Scholar 

  • Monteiro D (2013) Piperaceae em um fragmento de floresta atlântica da Serra da Mantiqueira, Minas Gerais, Brasil. Rodriguésia 64:379–398

    Google Scholar 

  • Mrkonjić ZO, Nađpal JD, Beara IN, Sabo VSA, Četojević-Simin DD, Mimica-Dukić NM, Lesjak MM (2017) Phenolic profiling and bioactivities of fresh fruits and jam of Sorbus species. J Serb Chem Soc 82:651–664

    Google Scholar 

  • Ndhlala AR, Moyo M, Van Staden J (2010) Natural antioxidants: fascinating or mythical biomolecules? Molecules (Basel, Switzerland) 15:6905–6930

    CAS  Google Scholar 

  • Parmar VS, Jain SC, Gupta S, Talwar S, Rajwanshi VK, Kumar R, Azim A, Malhotra S, Kumar N, Jain R, Sharma NK, Tyagi OD, Lawrie SJ, Errington W, Howarth OW, Olsen CE, Wengel SKSa (1998) Polyphenols and alkaloids from Piper species. Phytochemistry 49:1069–1078

    CAS  Google Scholar 

  • Pereira EPL, Ribeiro PR, Loureiro MB, de Castro RD, Fernandez LG (2014) Effect of water restriction on total phenolics and antioxidant properties of Amburana cearensis (Fr. Allem) A.C. Smith cotyledons during seed imbibition. Acta Physiol Plant 36:1293–1297

    CAS  Google Scholar 

  • Perigo CV, Torres RB, Bernacci LC, Guimarães EF, Haber LL, Facanali R, Vieira MAR, Quecini V, Marques MOM (2016) The chemical composition and antibacterial activity of eleven Piper species from distinct rainforest areas in Southeastern Brazil. Ind Crops Prod 94:528–539

    CAS  Google Scholar 

  • Pfaller MA, Diekema DJ (2004) Rare and emerging opportunistic fungal pathogens: concern for resistance beyond Candida albicans and Aspergillus fumigatus. J Clin Microbiol 42:4419–4431

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raja Mazlan RNA, Rukayadi Y, Maulidiani M, Ismail IS (2018) Solvent extraction and identification of active anticarcinogenic metabolites in piper cubeba L. through 1H-NMR-based metabolomics approach. Molecules (Basel, Switzerland) 23:1–19

    PubMed Central  Google Scholar 

  • Ribeiro PR, Willems LAJ, Mudde E, Fernandez LG, de Castro RD, Ligterink W, Hilhorst HWM (2015a) Metabolite profiling of the oilseed crop Ricinus communis during early seed imbibition reveals a specific metabolic signature in response to temperature. Ind Crops Prod 67:305–309

    CAS  Google Scholar 

  • Ribeiro PR, Willems LAJ, Mutimawurugo MC, Fernandez LG, de Castro RD, Ligterink W, Hilhorst HWM (2015b) Metabolite profiling of Ricinus communis germination at different temperatures provides new insights into thermo-mediated requirements for successful seedling establishment. Plant Sci 239:180–191

    CAS  PubMed  Google Scholar 

  • Ribeiro PR, Zanotti RF, Deflers C, Fernandez LG, de Castro RD, Ligterink W, Hilhorst HWM (2015c) Effect of temperature on biomass allocation in seedlings of two contrasting genotypes of the oilseed crop Ricinus communis. J Plant Physiol 185:31–39

    CAS  PubMed  Google Scholar 

  • Ribeiro RV, Bieski IGC, Balogun SO, Martins DTDO (2017) Ethnobotanical study of medicinal plants used by Ribeirinhos in the North Araguaia microregion, Mato Grosso, Brazil. J Ethnopharmacol 205:69–102

    PubMed  Google Scholar 

  • Ricardo LM, De Paula-Souza J, Andrade A, Brandão MGL (2017) Plants from the Brazilian traditional medicine: species from the books of the Polish physician Piotr Czerniewicz (Pedro Luiz Napoleão Chernoviz, 1812–1881). Braz J Pharm 27:388–400

    Google Scholar 

  • Richard D, Kefi K, Barbe U, Bausero P, Visioli F (2008) Polyunsaturated fatty acids as antioxidants. Pharmacol Res 57:451–455

    CAS  PubMed  Google Scholar 

  • Rivera E, Gomez H (2010) Chemotherapy resistance in metastatic breast cancer: the evolving role of ixabepilone. Breast Cancer Res 12(Suppl 2):S2–S2

    PubMed  PubMed Central  Google Scholar 

  • Rodrigues E, Carlini EA (2005) Ritual use of plants with possible action on the central nervous system by the Krahô Indians, Brazil. Phytother Res 19:129–135

    PubMed  Google Scholar 

  • Rodrigues E, Mendes FR, Negri G (2006) Plants indicated by Brazilian Indians for disturbances of the central nervous system: a bibliographical survey. Cent Nerv Syst Agents Med Chem 6:211–244

    CAS  Google Scholar 

  • Saleem M, Nazir M, Hussain H, Tousif MI, Elsebai MF, Riaz N, Akhtar N (2018) Natural phenolics as inhibitors of the human neutrophil elastase (HNE) release: an overview of natural anti-inflammatory discoveries during recent years. AntiInflamm Antiallerg Agents Med Chem 17:70–94

    CAS  Google Scholar 

  • Santana AI, Vila R, Cañigueral S, Gupta MP (2016) Chemical composition and biological activity of essential oils from different species of Piper from panama. Planta Med 82:986–991

    CAS  PubMed  Google Scholar 

  • Santos MRA, Lima MR, Oliveira CLLG (2014) Medicinal plants used in rondônia, Western amazon, Brazil. Revista Brasileira de Plantas Medicinais 16:707–720

    Google Scholar 

  • Santos PM, Batista DLJ, Ribeiro LAF, Boffo EF, de Cerqueira MD, Martins D, de Castro RD, de Souza-Neta LC, Pinto E, Zambotti-Villela L, Colepicolo P, Fernandez LG, Canuto GAB, Ribeiro PR (2018) Identification of antioxidant and antimicrobial compounds from the oilseed crop Ricinus communis using a multiplatform metabolite profiling approach. Ind Crops Prod 124:834–844

    CAS  Google Scholar 

  • Setzer WN, Park G, Agius BR, Stokes SL, Walker TM, Haber WA (2008) Chemical compositions and biological activities of leaf essential oils of twelve species of Piper from Monteverde, Costa Rica. Nat Product Commun 3:1367–1374

    CAS  Google Scholar 

  • Shang Y, Du Q, Liu S, Staadler M, Wang S, Wang D (2018) Antitumor activity of isosteroidal alkaloids from the plants in the genus veratrum and fritillaria. Curr Protein Pept Sci 19:302–310

    CAS  PubMed  Google Scholar 

  • Stoessl A, Unwin CH (1970) The antifungal factors in barley. V. Antifungal activity of the hordatines. Can J Bot 48:465–470

    CAS  Google Scholar 

  • Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discovery 5:219–234

    CAS  PubMed  Google Scholar 

  • Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015a) Global cancer statistics. CA 65:87–108

    PubMed  Google Scholar 

  • Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015b) Global cancer statistics, 2012. CA 65:87–108

    PubMed  Google Scholar 

  • Valente C, Pedro M, Duarte A, Nascimento Maria SJMSJ, Abreu PM, Ferreira MJU (2004) Bioactive diterpenoids, a new jatrophane and two ent-abietanes, and other constituents from Euphorbia pubescens. J Nat Prod 67:902–904

    CAS  PubMed  Google Scholar 

  • Vazquez JA (1999) Options for the management of mucosal candidiasis in patients with AIDS and HIV infection. Pharmacotherapy 19:76–87

    CAS  PubMed  Google Scholar 

  • Wang YH, Morris-Natschke SL, Yang J, Niu HM, Long CL, Lee KH (2014) Anticancer principles from medicinal piper (Hu Jiao) plants. J Tradit complement Med 4:8–16

    PubMed  PubMed Central  Google Scholar 

  • Watanabe T, Yamamoto Y, Miura M, Konno H, Yano S, Nonomura Y (2019) Systematic analysis of selective bactericidal activity of fatty acids against staphylococcus aureus with minimum inhibitory concentration and minimum bactericidal concentration. J Oleo Sci 68:291–296

    CAS  PubMed  Google Scholar 

  • Xia J, Wishart DS (2011) Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat Protoc 6:743

    CAS  PubMed  Google Scholar 

  • Xiang CP, Han JX, Li XC, Li YH, Zhang Y, Chen L, Qu Y, Hao CY, Li HZ, Yang CR, Zhao SJ, Xu M (2017) Chemical composition and acetylcholinesterase inhibitory activity of essential oils from Piper species. J Agric Food Chem 65:3702–3710

    CAS  PubMed  Google Scholar 

  • Yoon BK, Jackman JA, Valle-González ER, Cho NJ (2018) Antibacterial free fatty acids and monoglycerides: biological activities, experimental testing, and therapeutic applications. Int J Mol Sci 19:1114

    PubMed Central  Google Scholar 

  • Zhou SY, Fan F, Sun JZ, Guo Z, Sun WT, Chen L, Tang QQ, Qiu G, Yang SP, Yu J, Cai YS (2018) Cytotoxic alkaloids from the fruits and seeds of Alangium salviifolium (L.f.) Wangerin. Phytochem Lett 26:195–198

    CAS  Google Scholar 

Download references

Acknowledgements

Funding was provided by Federal University of Bahia (Project no: 11301), FAPESB, CNPq and CAPES.

Author information

Authors and Affiliations

Authors

Contributions

PRR designed and supervised all experiments. The extraction, antioxidant activity assay, total phenolic quantification, and antimicrobial activity were performed by DB and PRR. Plant collection and voucher production were performed by PRR, PC, DB, WL and LGF. Cytotoxicity assays were performed by VRS, LSS, DPB, and MBPS. Nuclear magnetic resonance (NMR) analysis was performed by PRR, DB, and MDC. GC–MS and LC–MS analysis were performed by PRR, DB, GABC, PC, LZV, and EP. Data processing and metabolite identification were performed by PRR, and GABC. Statistical analysis was performed by PRR and DB. PRR and DB wrote the manuscript, whereas WL, LGF, DPB, and GABC provided suggestions to the manuscript draft.

Corresponding author

Correspondence to Paulo R. Ribeiro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 365 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batista, D., Campos, P., Silva, V.R. et al. Piper anisum as a promising new source of bioactive metabolites. Chem. Pap. 74, 1505–1515 (2020). https://doi.org/10.1007/s11696-019-01004-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-019-01004-4

Keywords

Navigation