Skip to main content

Uniform Tb-based coordination polymer microspheres and their film: synthesis, characterization, and luminescence properties

Abstract

Terbium-based coordination polymer (Tb-CP) microspheres with diameters ranging from 0.8 to 1.5 μm were prepared from Tb(NO3)3 and 2-nitroterephthalic acid at 160 °C for 6 h. Their composite film with polymethyl methacrylate was prepared by spin-coating method. The products were fully characterized by SEM, TEM, PXRD, TG, FT-IR, and PL. Eu3+-doped Tb-CP microsphere and its film were prepared and their luminescent properties were investigated. It turns out that the hetero-metal CPs only exhibits the characteristic emission peak of Eu3+, indicating metal-to-metal charge transfer from the Tb3+ to Eu3+ centers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Bae TH, Lee JS, Qiu W, Koros WJ, Jones CW, Nair S (2010) A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals. Angew Chem 122:10059–10062. https://doi.org/10.1002/anie.201006141

    CAS  Article  Google Scholar 

  2. Dantas S, Sarkisov L, Neimark AV (2019) Deciphering the relations between pore structure and adsorption behavior in metal-organic frameworks: unexpected lessons from argon adsorption on copper-benzene-1, 3, 5-tricarboxylate. J Am Chem Soc 141:8397–8401. https://doi.org/10.1021/jacs.9b00906

    CAS  Article  PubMed  Google Scholar 

  3. Du P, Tang L, Zhao X, Weng W, Han G (2005) Effect of Tb3+ doping on the preferred orientation of lead titanate thin film prepared by sol-gel method on ITO/glass substrates. Surface Coat Technol 198:395–399. https://doi.org/10.1016/j.surfcoat.2004.10.035

    CAS  Article  Google Scholar 

  4. Einkauf JD, Kelley TT, Chan BC, de Lill DT (2016) Rethinking sensitized luminescence in lanthanide coordination polymers and MOFs: band sensitization and water enhanced Eu luminescence in [Ln (C15H9O5)3(H2O)3]n (Ln = Eu, Tb). Inorg Chem 55:7920–7927. https://doi.org/10.1021/acs.inorgchem.6b00878

    CAS  Article  PubMed  Google Scholar 

  5. García-Fuente A, Baur F, Cimpoesu F, Vega A, Jüstel T, Urland W (2018) Properties design: prediction and experimental validation of the luminescence properties of a new Eu(II)-based phosphor. Chem Eur J 24:16276–16281. https://doi.org/10.1002/chem.201804479

    CAS  Article  PubMed  Google Scholar 

  6. Gomez GE, Kaczmarek AM, Deum RV, Brusau EV, Narda GE, Vega D, Iglesas M, Gutierrez-Puebla E, Monge MÁ (2016) Photoluminescence, unconventional-rang temperature sensing, and efficient catalytic activities of lanthanide metal-organic framework. Eur J Inorg Chem 10:1577–5788. https://doi.org/10.1002/ejic.201501402

    CAS  Article  Google Scholar 

  7. Kempahanumakkagari S, Vellingiri K, Deep A, Kwon EE, Bolan N, Ki-Hyun Kim (2018) Metal-organic framework composites as electrocatalysts for electrochemical sensing applications. Coord Chem Rev 357:105–129. https://doi.org/10.1016/j.ccr.2017.11.028

    CAS  Article  Google Scholar 

  8. Kim CR, Uemura T, Kitagawa S (2016) Inorganic nanoparticles in porous coordination polymers. Chem Soc Rev 45:3828–3845. https://doi.org/10.1039/C5CS00940E

    CAS  Article  PubMed  Google Scholar 

  9. Lee MJ, Kwon HT, Jeong HK (2017) High-flux zeolitic imidazolate framework membranes for propylene/propane separation by postsynthetic linker exchange. Angew Chem Int Ed 57:156–161. https://doi.org/10.1002/ange.201708924

    Article  Google Scholar 

  10. Li S, Huo F (2015) Metal-organic framework composites: from fundamentals to applications. Nanoscale 7:7482–7501. https://doi.org/10.1039/C5NR00518C

    CAS  Article  PubMed  Google Scholar 

  11. Li S, Zhang X, Hou Z, Cheng Z, Ma P, Lin J (2012) Enhanced emission of ultra-small-sized LaF3:RE3+ (RE = Eu, Tb) nanoparticles through 1,2,4,5-benzenetetracarboxylic acid sensitization. Nanoscale 4:5619–5626. https://doi.org/10.1039/C2NR31206A

    CAS  Article  PubMed  Google Scholar 

  12. Li Y, Ma C, Nian P, Liu H, Zhang X (2019) Green synthesis of ZIF-8 tubular membranes from a recyclable 2-methylimidazole water-solvent solution by ZnO nanorods self-converted strategy for gas separation. J Membr Sci 581:344–354. https://doi.org/10.1016/j.memsci.2019.03.069

    CAS  Article  Google Scholar 

  13. Lu K, Aung T, Guo N, Weichselbaum R, Lin W (2018) Nanoscale metal-organic frameworks for therapeutic, imaging, and sensing applications. Adv Mater 30:1707634. https://doi.org/10.1002/adma.201707634

    CAS  Article  Google Scholar 

  14. Novio F, Simmchen J, Vázquez-Mera N, Amorín-Ferré D (2013) Coordination polymer nanoparticles in medicine. Coord Chem Rev 257:2839. https://doi.org/10.1016/j.ccr.2013.04.022

    CAS  Article  Google Scholar 

  15. Rodenas T, Luz I, Prieto G, Seoane B, Miro H, Corma A, Kapteijn F, Xamena FXL, Gascon J (2014) Metal-organic framework nanosheets in polymer composite materials for gas separation. Nat Mater 14:48–55. https://doi.org/10.1038/NMAT4113

    Article  PubMed  PubMed Central  Google Scholar 

  16. Shekhah O, Liu J, Fischer RA, Wöll C (2011) MOF thin films: existing and future applications. Chem Soc Rev 40:1081–1106. https://doi.org/10.1039/C0CS00147C

    CAS  Article  PubMed  Google Scholar 

  17. Simon-Yarza T, Mielcarek A, Couvreur P, Serre C (2018) Nanoparticles of metal-organic frameworks: on the road to in vivo efficacy in biomedicine. Adv Mater 30:1707365. https://doi.org/10.1002/adma.201870281

    Article  Google Scholar 

  18. Sindoro M, Yanai N, Jee AY, Granick S (2014) Colloidal-sized metal-organic frameworks: synthesis and applications. Acc Chem Res 47:459–469. https://doi.org/10.1021/ar400151n

    CAS  Article  PubMed  Google Scholar 

  19. Souza ER, Monteiro J, Mazali IO, Sigoli FA (2016) Photophysical studies of highly luminescent europium (III) and terbium (III) complexes functionalized with amino and mercapto groups. J Lumin 170:520–527. https://doi.org/10.1016/j.jlumin.2015.03.032

    CAS  Article  Google Scholar 

  20. Spokoyny AM, Kim D, Sumreina A, Mirkin CA (2009) Infinite coordination polymer nano-and microparticle structures. Chem Soc Rev 38:1218–1227. https://doi.org/10.1039/B807085G

    CAS  Article  PubMed  Google Scholar 

  21. Wang HS (2017) Metal–organic frameworks for biosensing and bioimaging applications. Coord Chem Rev 349:139–155. https://doi.org/10.1016/j.ccr.2017.08.015

    CAS  Article  Google Scholar 

  22. Wang F, Hu X, Hu J, Peng Q, Zheng B, Du J, Xiao D (2018) Fluorescence assay for alkaline phosphatase activity based on energy transfer from terbium to europium in lanthanide coordination polymer nanoparticles. J Mater Chem B 6:6008–6015. https://doi.org/10.1039/C8TB01713A

    CAS  Article  Google Scholar 

  23. Wen GX, Han ML, Wu XQ, Wu Y, Dong W, Zhao J, Li D, Ma L (2016) A multi-responsive luminescent sensor based on a super-stable sandwich-type terbium (III)-organic framework. Dalton Trans 45:15492–15499. https://doi.org/10.1039/C6DT03057B

    CAS  Article  PubMed  Google Scholar 

  24. Yan B, Guo M (2013) Photofunctional Eu3+/Tb3+ organic–inorganic polymeric hybrid microspheres with covalently bonded resin hosts. J Photochem Photobiol A 257:34–43. https://doi.org/10.1016/j.jphotochem.2013.02.013

    CAS  Article  Google Scholar 

  25. Yang L, Han L, Ren J, Wei H, Jia L (2015) Coating process and stability of metal-polyphenol film. Colloid Surface A 484:197–205. https://doi.org/10.1016/j.colsurfa.2015.07.061

    CAS  Article  Google Scholar 

  26. Yang W, Tian HR, Li JP, Hui YF, He X, Li J, Dang S, Xie Z, Sun ZM (2016) Photochromic terbium phosphonates with photomodulated luminescence and metal ion sensitive detection. Chem Eur J 22:15451–15457. https://doi.org/10.1002/chem.201602779

    CAS  Article  PubMed  Google Scholar 

  27. Zhang JY, Su CY (2013) Metal-organic gels: from discrete metallogelators to coordination polymers. Coord Chem Rev 257:1373–1408. https://doi.org/10.1016/j.ccr.2013.01.005

    CAS  Article  Google Scholar 

  28. Zhong S, Jing H, Li Y, Yin S, Zeng C, Wang L (2014) Coordination polymer submicrospheres: fast microwave synthesis and their conversion under different atmospheres. Inorg Chem 53:8278–8286. https://doi.org/10.1021/ic5005769

    CAS  Article  PubMed  Google Scholar 

  29. Zhou HC, Long JR, Yaghi OM (2012) Introduction to metal-organic frameworks. Chem Rev 112:673–674. https://doi.org/10.1021/cr300014x

    CAS  Article  PubMed  Google Scholar 

  30. Zou H, Wang L, Zeng C, Gao X, Wang Q, Zhong S (2018) Rare-earth coordination polymer micro/nanomaterials: Preparation, properties and applications. Front Mater Sci 12:327–347. https://doi.org/10.1007/s11706-018-0444-x

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Jiangxi Provincial Department of Science and Technology (No. 20172BCB22008) and the National Natural Science Foundation of China (No. 91622105).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yuan Li or Shengliang Zhong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 183 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, S., Zou, H., Xu, D. et al. Uniform Tb-based coordination polymer microspheres and their film: synthesis, characterization, and luminescence properties. Chem. Pap. 74, 1417–1427 (2020). https://doi.org/10.1007/s11696-019-00991-8

Download citation

Keywords

  • Coordination polymer
  • Nanomaterials
  • Spin-coating
  • Film
  • Rare earth