Advertisement

Synthesis, characterization, and catalytic properties of zinc oxide nanoparticles for the treatment of wastewater in the presence of natural sunlight

  • D. A. LavateEmail author
  • V. J. Sawant
  • A. S. Khomane
Original Paper
  • 11 Downloads

Abstract

Zinc oxide nanoparticles were synthesized using monochloro acetic acid as a complexing agent. These synthesized nanoparticles were characterized by X-ray diffraction, scanning electron microscopy, UV–visible, energy-dispersive X-ray, Fourier transform infrared spectroscopy analysis, and BET techniques. As-prepared ZnO nanoparticles show crystalline nature with hexagonal dominant crystal phase. The SEM image shows the formation of homogenous micro-porous nanoparticles of ZnO. The photocatalytic activity of ZnO materials was measured on UV–visible spectrophotometer under natural sunlight irradiation and shows the efficiency (ɳ) of 56.80% in 150 min of time. A ZnO nanoparticle shows an excellent photocatalytic activity and can be used for the treatment of wastewater.

Keywords

Oxide materials Chemical synthesis Optical spectroscopy X-ray diffraction 

Notes

References

  1. Baldev E, MubarakAli D, Ilavarasi A, Pandiaraj D, Ishack KA, Thajuddin N (2013) Degradation of synthetic dye, Rhodamine B to environmentally non-toxic products using microalgae. Colloids Surf B 105:207–214.  https://doi.org/10.1016/j.colsurfb.2013.01.008 CrossRefGoogle Scholar
  2. Baxter JB, Walker AM, van Ommering K, Aydil ES (2006) Synthesis and characterization of ZnO nanowires and their integration into dye sensitized solar cells. Nanotechnology 17:304–312.  https://doi.org/10.1088/0957-4484/17/11/S13 CrossRefGoogle Scholar
  3. Cao H, Xu JY, Zhang DZ, Chang SH, Ho ST, Seeling EW, Liu X, Chang RPH (2000) Spatial confinement of laser light in active random media. Phys Rev Lett 84:5584–5587.  https://doi.org/10.1103/PhysRevLett.84.5584 CrossRefGoogle Scholar
  4. Chen Y, Zhang C, Huang W, Situ Y, Huang H (2015) Multimorphologiesnano-ZnO preparing through a simple solvothermal method for photocatalytic application. Mater Lett 141:294–297.  https://doi.org/10.1016/j.matlet.2014.11.106 CrossRefGoogle Scholar
  5. Cullity BD, Stock SR (2001) Elements of x-ray diffraction, 3rd edn. Prentice-Hall, New York, p 99Google Scholar
  6. Deshmukh PR, Sohn Y, Shin WG (2017) Chemical synthesis of ZnO nanorods: investigations of electrochemical performance and photo-electrochemical water splitting applications. J Alloys Compd 711:573–580.  https://doi.org/10.1016/j.jallcom.2017.04.030 CrossRefGoogle Scholar
  7. Erik C, Chiara G, Ilaria B, Fabrizio S, Paola C, Maria CP (2018) Rare earth ions doped ZnO: synthesis, characterization and preliminary photoactivity assessment. J Solid State Chem 264:42–47.  https://doi.org/10.1016/j.jssc.2018.05.001 CrossRefGoogle Scholar
  8. Han F, Kambala VSR, Srinivasan M, Rajarathram D, Naidu (2009) Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: a review. App Catal A 359:25–40.  https://doi.org/10.1016/j.apcata.2009.02.043 CrossRefGoogle Scholar
  9. He Z, Que W, He Y, Chen J, Xie H, Wang G (2012) Nanosphere assembled mesoporous titanium dioxide with advanced photocatalytic activity using absorbant cotton as template. J Mater Sci 47:7210–7216.  https://doi.org/10.1007/s10853-012-6667-9 CrossRefGoogle Scholar
  10. Hernandez-Alonso MD, Fresno F, Suarez S, Coronado JM (2009) Development of alternative photocatalysts to TiO2: challenges and opportunities. J M Energy Environ Sci 2:1231–1257.  https://doi.org/10.1039/B907933E CrossRefGoogle Scholar
  11. Hong Y, Tian C, Jiang B, Wu A, Zhang Q, Tian G, Fu H (2013) Facile synthesis of sheetlike ZnO assembly composed of small ZnO particles for highly efficient photocatalysis. J Mater Chem A 1:5700–5708.  https://doi.org/10.1039/C3TA10218A CrossRefGoogle Scholar
  12. Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292:1897–1899.  https://doi.org/10.1126/science.1060367 CrossRefGoogle Scholar
  13. Keis K, Magnusson E, Lindstrom H, Lindquist S-E, Hagfeldt A (2002) A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes. Sol Energy Mater Sol Cells 73:51–58.  https://doi.org/10.1016/S0927-0248(01)00110-6 CrossRefGoogle Scholar
  14. Kumar R, Anandan S, Hembram K, Rao TN (2014) Efficient ZnO-based visible-light-driven photocatalyst for antibacterial applications. ACS Appl Mater Interfaces 6:13138–13148.  https://doi.org/10.1021/am502915v CrossRefGoogle Scholar
  15. Lakshmi GC, Ananda S, Samashekar R, Ranganathaiah C (2012) Synthesis, characterisation and photocatalytic activity of ZnO: Sn nanocomposites. Int J Adv Sci Technol 5(2):62–71Google Scholar
  16. Li Q, Bian J, Sun J, Wang J, Luo Y, Sun K, Dongqi Y (2010) Controllable growth of well-aligned ZnOnanorod arrays by low-temperature wet chemical bath deposition method. Appl Surf Sci 256:1698–1702.  https://doi.org/10.1016/j.apsusc.2009.09.097 CrossRefGoogle Scholar
  17. Lim SK, Hwang S-H, Kim S, Park H (2011) Preparation of ZnO nanorods by microemulsion synthesis and their application as a CO gas sensor. Sens Actuators B 160:94–98.  https://doi.org/10.1016/j.snb.2011.07.018 CrossRefGoogle Scholar
  18. Liu C, Zapien JA, Yao Y, Meng X, Lee CS, Fan S, Lifshitz Y, Lee ST (2003) High-density, ordered ultraviolet light-emitting ZnO nanowire arrays. Adv Mater 15:838–841.  https://doi.org/10.1002/adma.20030443 CrossRefGoogle Scholar
  19. Liu B, Wen L, Zhao X (2009) Efficient degradation of aqueous methyl orange over TiO2 and CdS electrodes using photoelectrocatalysis under UV and visible light irradiation. Prog Org Coat 64:120–123.  https://doi.org/10.1016/j.porgcoat.2008.09.014 CrossRefGoogle Scholar
  20. Liu Y, Hang T, Xie Y, Bao Z, Song J, Zhang H, Xie E (2011) Effect of Mg doping on the hydrogen-sensing characteristics of ZnO thin films. Sens Actuators B 160:266–270.  https://doi.org/10.1016/j.snb.2011.07.046 CrossRefGoogle Scholar
  21. Malaikozhundan B, Vaseeharan B, Vijaykumar S, Pandiselvi K, Kalanjim R, Murugan K, Benelli G (2017) Biological therapeutics of Pongamia pinnata coated zinc oxide nanoparticles against clinically important pathogenic bacteria, fungi and MCF-7 breast cancer cells. Microb Pathog 104:268–277.  https://doi.org/10.1016/j.micpath.2017.01.029 CrossRefGoogle Scholar
  22. Mosquera E, Pozo I, Morel M (2013) Structure and red shift of optical band gap in CdO–ZnO nanocomposite synthesized by the sol–gel method. J Solid State Chem 206:265–271.  https://doi.org/10.1016/j.jssc.2013.08.025 CrossRefGoogle Scholar
  23. Muiva CM, Sathiaraj TS, Maabong K (2011) Effect of doping concentration on the properties of aluminium doped zinc oxide thin films prepared by spray pyrolysis for transparent electrode applications. Ceram Int 37:555560.  https://doi.org/10.1016/j.ceramint.2010.09.042 CrossRefGoogle Scholar
  24. Ng J, Pan JH, Sun DD (2011) Hierachical assembly of anatase nanowhiskers and evaluation of their photocatalytic efficiency in comparison to various one-dimensional TiO2 nanostructure. J Mater Chem 21:11844–11853.  https://doi.org/10.1039/C1JM11088H CrossRefGoogle Scholar
  25. Pandya HJ, Chandra S, Vyas AL (2012) Integration of ZnO nanostructures with MEMS for ethanol sensor. Sens Actuators B 161:923–928.  https://doi.org/10.1016/j.snb.2011.11.063 CrossRefGoogle Scholar
  26. Pati R, Mehta RK, Mohanty S, Padhi A, Sengupta M, Vaseeharan B, Goswami C, Sonawane A (2014) Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in microphages. Nanomedicine:Nanotechnology. Biol Med 10:1195–1208.  https://doi.org/10.1016/j.nano.2014.02.012 Google Scholar
  27. Pimentel A, Fortunato E, Goncalves A, Marques A, Aguas H, Pereira L, Ferreira I, Martins R (2005) Polycrystalline intrinsic zinc oxide to be used in transparent electronic devices. Thin Solid Films 487:205–211.  https://doi.org/10.1016/j.tsf.2005.01.067 CrossRefGoogle Scholar
  28. Rai P, Yeon-Tae Y (2012) Synthesis of floral assembly with single crystalline ZnO nanorods and its CO sensing property. Sens Actuators B 161:748–754.  https://doi.org/10.1016/j.snb.2011.11.027 CrossRefGoogle Scholar
  29. Ramchandran I, Baskaralingam V, Subramanian K, Balan B, Marimuthu G, Naiyf SA, Shine K, Mohammed NA, Jamal MK, Giovanni B (2018) Facile green synthesis of zinc oxide nanoparticles using uivalactuca seaweed extract and evaluation of their Photocatalytic, antibiofilm and insecticidal activity. J Photochem Photobiol B 178:249–258.  https://doi.org/10.1016/jjphtobiol.2017.11.006 CrossRefGoogle Scholar
  30. Salavati-Niasaria M, Davara F, Khansaric A (2011) Nanosphericals and nanobundles of ZnO: synthesis and characterization. J Alloys Compd 509:61–65.  https://doi.org/10.1016/j.jallcom.2010.08.060 CrossRefGoogle Scholar
  31. Senthil Kumar P, Selvakumar M, Bhagabati P, Bharathi B, Karuthapandian S, Balakumar S (2014) CdO/ZnO nano hybrids: facile synthesis and morphologically enhanced photocatalytic performance. RSC Adv 4:32977–32986.  https://doi.org/10.1039/c4ra02502d (JCPDS Data File No. 00-001-1136 ) CrossRefGoogle Scholar
  32. Stoycheva T, Vallejos S, Blackman C, Moniz SJA, Caldererc J, Correig X (2012) Important considerations for effective gas sensors based on metal oxide nanoneedles films. Sens Actuators B 161:406–413.  https://doi.org/10.1016/j.snb.2011.10.052 CrossRefGoogle Scholar
  33. Thi LA, Pung SY, Sreekantan, Mastsuda A, Phu HD (2018) Assessment of Rhobamine B dye removal by ZnO nanodisks under visible light. J Phys 1082:012045.  https://doi.org/10.1088/1742-6596/1082/1/012045 Google Scholar
  34. Vijayakumar S, Vinoj G, Malaikozhundan B, Shanthi S, Vaseeharan B (2015) Plectranthusamboinicus leaf extract mediated synthesis of Zinc oxide nanoparticles and its control of methicillin resistant Staphylacaccus aureus biofilm and blood sucking mosquito larvae. Spectrochim Acta Part A 137:886–891.  https://doi.org/10.1016/j.saa.2014.08.064 CrossRefGoogle Scholar
  35. Vijaykumar S, Vaseeharan B, Malaikozhundan B, Divya M, Abhinaya M, Gobi N, Bhallacharyya A, Balashanmugam N, Surmistha D, Murugan K, Benelli G (2017) Ecotoxicity of musaparadisiaca leaf extract-coated Zno nanoparticles to the freshwater microcrustacean ceriodaphniacornuta. Limnologica 67:1–6.  https://doi.org/10.1016/j.limno.2017.09.004 CrossRefGoogle Scholar
  36. Wang HJ, Sun FQ, Zhang Y, Gu KY, Chen W, Li WS (2011) Photochemical construction of free-standard Sn-filled SnO2 nanotube arrayon a solution surface flexible use in photocatalysis. J Mater Chem 21:12407–12412.  https://doi.org/10.1039/C1JM10887E CrossRefGoogle Scholar
  37. Wang L, Kang Y, Liu X, Zhang S, Huang W, Wang S (2012) ZnO nanorod gas sensor for ethanol detection. Sens Actuators B 162:237–243.  https://doi.org/10.1016/j.snb.2011.12.073 CrossRefGoogle Scholar
  38. Warren BE (1990) X-ray diffraction. Dover Publication Inc., New YorkGoogle Scholar
  39. Yu JC, Yu JG, Ho WK, Jiang ZT, Zhang LZ (2002) Effect of F Doping on photocatalytic activity and microstructure of Nanocrystalline TiO2 powders. Chem Mater 14:3808–3816.  https://doi.org/10.1039/c1jm11088h CrossRefGoogle Scholar
  40. Zhang R, Kerr LL (2007) A simple method for systematically controlling ZnO crystal size and growth orientation. J Solid State Chem 180:988–994.  https://doi.org/10.1016/j.jssc.2006.12.026 CrossRefGoogle Scholar
  41. Zhou L-J, Li C, Zou X, Zhao J, Jin P-P, Feng L-L, Fan M-H, Li G-D (2014) Porous nano plate-assembled CdO/ZnO composite microstructures: a highly sensitive material for ethanol detection. Sens Actuators B 197:370–375.  https://doi.org/10.1016/j.snb.2014.02.086 CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Government Rajaram CollegeKolhapur, Affiliated to Shivaji UniversityKolhapurIndia

Personalised recommendations