Chemoselective synthesis of bis(indolyl)methanes using sulfonic acid-functionalized chitosan

Abstract

Herein, we describe the electrophilic substitution reaction of indole with aldehydes and ketone using sulphonic acid functional group containing chitosan for the synthesis of bis(indolyl)methanes. The reaction is chemoselective affording a product from aldehydes and indole. The catalyst can be reused up to three times without great loss in yields. Hence, chitosan–SO3H (CTSA) proved to be a heterogeneous, efficient, chemoselective, and reusable catalyst for the synthesis of bis(indolyl)methane derivatives.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Scheme 2
Fig. 4

References

  1. Abe T, Nakamura S, Yanada R, Choshi T, Hibino S, Ishikura M (2013) One-pot construction of 3, 3′-bisindolylmethanes through Bartoli indole synthesis. Org Lett 15:3622–3625

    CAS  Article  PubMed  Google Scholar 

  2. Azizi N, Torkian L, Saidi MR (2007) Highly efficient synthesis of bis(indolyl)methanes in water. J Mol Catal A Chem 275:109–112

    CAS  Article  Google Scholar 

  3. Bailey DC, Langer SH (1981) Immobilized transition-metal carbonyls and related catalysts. Chem Rev 81:109–148

    CAS  Article  Google Scholar 

  4. Bao B, Sun Q, Yao X, Hong J, Lee C-O, Sim CJ, Im KS, Jung JH (2005) Cytotoxic bisindole alkaloids from a marine sponge Spongosorites sp. J Nat Prod 68:711–715

    CAS  Article  PubMed  Google Scholar 

  5. Boroujeni KP, Parvanak K (2011) Efficient and solvent-free synthesis of bis-indolylmethanes using silica gel supported aluminium chloride as a reusable catalyst. Chin Chem Lett 22:939–942

    CAS  Article  Google Scholar 

  6. Calò V, Nacci A, Monopoli A, Fornaro A, Sabbatini L, Cioffi N, Ditaranto N (2004) Heck reaction catalyzed by nanosized palladium on chitosan in ionic liquids. Organometallics 23:5154–5158

    Article  Google Scholar 

  7. Casapullo A, Bifulco G, Bruno I, Riccio R (2000) New bisindole alkaloids of the topsentin and hamacanthin classes from the Mediterranean marine sponge Rhaphisia lacazei. J Nat Prod 63:447–451

    CAS  Article  PubMed  Google Scholar 

  8. Chakrabarty M, Mukherji A, Karmakar S, Arima S, Harigaya Y (2006) A new catalytic application of a keggin acid in the synthesis of symmetrical bis (indolyl) alkanes. Heterocycles 68(2):331–338

    CAS  Article  Google Scholar 

  9. Chen D, Yu L, Wang PG (1996) Lewis acid-catalyzed reactions in protic media. Lanthanide-catalyzed reactions of indoles with aldehydes or ketones. Tetrahedron Lett 37:4467–4470

    CAS  Article  Google Scholar 

  10. Chtchigrovsky M, Primo A, Gonzalez P, Molvinger K, Robitzer M, Quignard F, Taran F (2009) Functionalized chitosan as a green, recyclable, biopolymer-supported catalyst for the [3 + 2] huisgen cycloaddition. Angew Chem 121:6030–6034

    Article  Google Scholar 

  11. Contractor R, Samudio IJ, Estrov Z, Harris D, McCubrey JA, Safe SH, Andreeff M, Konopleva M (2005) A novel ring-substituted diindolylmethane, 1, 1-bis [3′-(5-methoxyindolyl)]-1-(pt-butylphenyl) methane, inhibits extracellular signal-regulated kinase activation and induces apoptosis in acute myelogenous leukemia. Can Res 65:2890–2898

    CAS  Article  Google Scholar 

  12. Dash M, Chiellini F, Ottenbrite R, Chiellini E (2011) Chitosan—a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36:981–1014

    CAS  Article  Google Scholar 

  13. Firouzabadi H, Iranpoor N, Jafari AA (2006) Aluminumdodecatungstophosphate (AlPW12O40), a versatile and a highly water tolerant green Lewis acid catalyzes efficient preparation of indole derivatives. J Mol Catal A Chem 244:168–172

    CAS  Article  Google Scholar 

  14. Garbe TR, Kobayashi M, Shimizu N, Takesue N, Ozawa M, Yukawa H (2000) Indolyl carboxylic acids by condensation of indoles with α-keto acids. J Nat Prod 63:596–598

    CAS  Article  PubMed  Google Scholar 

  15. Hikawa H, Yokoyama Y (2013) Pd-catalyzed C–H activation in water: synthesis of bis(indolyl) methanes from indoles and benzyl alcohols. RSC Adv 3:1061–1064

    CAS  Article  Google Scholar 

  16. Ichite N, Chougule MB, Jackson T, Fulzele SV, Safe S, Singh M (2009) Enhancement of docetaxel anticancer activity by a novel diindolylmethane compound in human non-small cell lung cancer. Clin Cancer Res 15:543–552

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Jamsheena V, Shilpa G, Saranya J, Harry NA, Lankalapalli RS, Priya S (2016) Anticancer activity of synthetic bis(indolyl)methane-ortho-biaryls against human cervical cancer (HeLa) cells. Chem Biol Interact 247:11–21

    CAS  Article  PubMed  Google Scholar 

  18. Ji S-J, Wang S-Y, Zhang Y, Loh T-P (2004) Facile synthesis of bis(indolyl)methanes using catalytic amount of iodine at room temperature under solvent-free conditions. Tetrahedron 60:2051–2055

    CAS  Article  Google Scholar 

  19. Kalla RMN, John JV, Park H, Kim I (2014) Tetramethyl guanidinium chlorosulfonate as a highly efficient and recyclable organocatalyst for the preparation of bis(indolyl)methane derivatives. Catal Commun 57:55–59

    CAS  Article  Google Scholar 

  20. Kamble VT, Kadam KR, Joshi NS, Muley DB (2007) HClO4–SiO2 as a novel and recyclable catalyst for the synthesis of bis-indolylmethanes and bis-indolylglycoconjugates. Catal Commun 8:498–502

    CAS  Article  Google Scholar 

  21. Karthik M, Tripathi A, Gupta N, Palanichamy M, Murugesan V (2004) Zeolite catalyzed electrophilic substitution reaction of indoles with aldehydes: synthesis of bis(indolyl)methanes. Catal Commun 5:371–375

    CAS  Article  Google Scholar 

  22. Karthik M, Magesh C, Perumal P, Palanichamy M, Arabindoo B, Murugesan V (2005) Zeolite-catalyzed ecofriendly synthesis of vibrindole A and bis(indolyl)methanes. Appl Catal A 286:137–141

    CAS  Article  Google Scholar 

  23. Kaur G, Vadekeetil A, Harjai K, Singh V (2015) Synthesis of α-acylamino-amide-bis(indolyl)methane heterocycles by sequential one pot condensation-Ugi/Passerini reactions and their antimicrobial evaluation. Tetrahedron Lett 56:4445–4450

    CAS  Article  Google Scholar 

  24. Ke B, Qin Y, Wang Y, Wang F (2005) Amberlyst-catalyzed reaction of indole: synthesis of bisindolylalkane. Synth Commun 35:1209–1212

    CAS  Article  Google Scholar 

  25. Khalil K, Al-Matar H, Elnagdi M (2010) Chitosan as an eco-friendly heterogeneous catalyst for Michael type addition reactions. A simple and efficient route to pyridones and phthalazines. Eur J Chem 1:252–258

    CAS  Article  Google Scholar 

  26. Khan K, Siddiqui ZN (2015) An efficient synthesis of tri-and tetrasubstituted imidazoles from benzils using functionalized chitosan as biodegradable solid acid catalyst. Ind Eng Chem Res 54:6611–6618

    CAS  Article  Google Scholar 

  27. Kühbeck D, Saidulu G, Reddy KR, Díaz DD (2012) Critical assessment of the efficiency of chitosan biohydrogel beads as recyclable and heterogeneous organocatalyst for C–C bond formation. Green Chem 14:378–392

    Article  Google Scholar 

  28. Lafzi F, Kilic H, Ertugrul B, Arik M, Saracoglu N (2018) Bis (indolyl) methane substituted tetraphenylethylene derivatives as AIE active materials. J Luminesc 208:174–182

    Article  Google Scholar 

  29. Liao Y, Li Q, Wang N, Shao S (2015) Development of a new electrochemical sensor for determination of Hg(II) based on bis(indolyl)methane/mesoporous carbon nanofiber/nafion/glassy carbon electrode. Sens Actuators B Chem 215:592–597

    CAS  Article  Google Scholar 

  30. Magesh CJ, Nagarajan R, Karthik M, Perumal PT (2004) Synthesis and characterization of bis(indolyl)methanes, tris (indolyl) methanes and new diindolylcarbazolylmethanes mediated by Zeokarb-225, a novel, recyclable, eco-benign heterogenous catalyst. Appl Catal A 266:1–10

    CAS  Article  Google Scholar 

  31. Martina K, Leonhardt SE, Ondruschka B, Curini M, Binello A, Cravotto G (2011) In situ cross-linked chitosan Cu(I) or Pd(II) complexes as a versatile, eco-friendly recyclable solid catalyst. J Mol Catal A Chem 334:60–64

    CAS  Article  Google Scholar 

  32. Martınez R, Espinosa A, Tárraga A, Molina P (2008) Bis(indolyl)methane derivatives as highly selective colourimetric and ratiometric fluorescent molecular chemosensors for Cu2+ cations. Tetrahedron 64:2184–2191

    Article  Google Scholar 

  33. Mohammadi R, Kassaee MZ (2013) Sulfochitosan encapsulated nano-Fe3O4 as an efficient and reusable magnetic catalyst for green synthesis of 2-amino-4H-chromen-4-yl phosphonates. J Mol Catal A Chem 380:152–158

    CAS  Article  Google Scholar 

  34. Nadkarni SV, Gawande MB, Jayaram RV, Nagarkar JM (2008) Synthesis of bis(indolyl)methanes catalyzed by surface modified zirconia. Catal Commun 9:1728–1733

    CAS  Article  Google Scholar 

  35. Nagarajan R, Perumal PT (2002) InCl3 and In(OTf)3 catalyzed reactions: synthesis of 3-acetyl indoles, bis-indolylmethane and indolylquinoline derivatives. Tetrahedron 58:1229–1232

    CAS  Article  Google Scholar 

  36. Oh K-B, Mar W, Kim S, Kim J-Y, Lee T-H, Kim J-G, Shin D, Sim CJ, Shin J (2006) Antimicrobial activity and cytotoxicity of bis (indole) alkaloids from the sponge Spongosorites sp. Biol Pharm Bull 29:570–573

    CAS  Article  PubMed  Google Scholar 

  37. Pore D, Desai UV, Thopate T, Wadgaonkar P (2006) A mild, expedient, solventless synthesis of bis (indolyl) alkanes using silica sulfuric acid as a reusable catalyst. Arkivoc 12:75–80

    Google Scholar 

  38. Ramesh C, Banerjee J, Pal R, Das B (2003) Silica supported sodium hydrogen sulfate and amberlyst-15: two efficient heterogeneous catalysts for facile synthesis of bis-and tris (1H-indol-3-yl) methanes from indoles and carbonyl compounds [1]. Adv Synth Catal 345:557–559

    CAS  Article  Google Scholar 

  39. Reddy BS, Venkateswarlu A, Reddy GN, Reddy YR (2013) Chitosan–SO3H: an efficient, biodegradable, and recyclable solid acid for the synthesis of quinoline derivatives via Friedländer annulation. Tetrahedron Lett 54:5767–5770

    CAS  Article  Google Scholar 

  40. Sarva S, Harinath JS, Sthanikam SP, Ethiraj S, Vaithiyalingam M, Cirandur SR (2016) Synthesis, antibacterial and anti-inflammatory activity of bis(indolyl)methanes. Chin Chem Lett 27:16–20

    CAS  Article  Google Scholar 

  41. Shchepinov M, Korshun V (2003) Recent applications of bifunctional trityl groups. Chem Soc Rev 32:170–180

    CAS  Article  PubMed  Google Scholar 

  42. Shimoda M, Shibamoto T (1990) Isolation and identification of headspace volatiles from brewed coffee with an on-column GC/MS method. J Agric Food Chem 38:802–804

    CAS  Article  Google Scholar 

  43. Simha PR, Mangali MS, Kuppireddy Gari D, Venkatapuram P, Adivireddy P (2017) Benzenesulfonic acid: a versatile catalyst for the synthesis of bis(indolyl)methanes as antioxidants. J Heterocycl Chem 54:2717–2724

    CAS  Article  Google Scholar 

  44. Srinivasa A, Nandeshwarappa BP, Kiran BM, Mahadevan KM (2008) Antimony trichloride catalyzed condensation of indole and carbonyl compounds: synthesis of bis(indolyl)methanes. Phosphorus Sulfur Silicon Relat Elem 182:2243–2249

    Article  Google Scholar 

  45. Sun J, Wang J, Cheng W, Zhang J, Li X, Zhang S, She Y (2012) Chitosan functionalized ionic liquid as a recyclable biopolymer-supported catalyst for cycloaddition of CO2. Green Chem 14:654–660

    CAS  Article  Google Scholar 

  46. Swetha A, Babu BM, Meshram H (2015) An efficient and rapid protocol for the synthesis of diversely functionalized bisindolylmethanes. Tetrahedron Lett 56:1775–1779

    CAS  Article  Google Scholar 

  47. Tanaka J, Da Silva C, De Oliveira A, Nakamura C, Dias Filho B (2006) Antibacterial activity of indole alkaloids from Aspidosperma ramiflorum. Braz J Med Biol Res 39:387–391

    CAS  Article  PubMed  Google Scholar 

  48. Veisi H, Sedrpoushan A, Zolfigol MA, Mohanazadeh F (2011) Synthesis and application of silica phenyl sulfonic acid as a solid acid heterogeneous catalyst for one-pot synthesis of 2-aryl-1-arylmethyl-1H-1,3-benzimidazoles and bis(indolyl)methanes in water. J Heterocycl Chem 48:1448–1454

    CAS  Article  Google Scholar 

  49. Veluri R, Oka I, Wagner-Döbler I, Laatsch H (2003) New indole alkaloids from the North Sea bacterium Vibrio parahaemolyticus Bio249. J Nat Prod 66:1520–1523

    CAS  Article  PubMed  Google Scholar 

  50. Wright CW, Phillipson JD (1990) Natural products and the development of selective antiprotozoal drugs. Phytother Res 4:127–139

    CAS  Article  Google Scholar 

  51. Wright C, Allen D, Cai Y, Phillipson J, Said I, Kirby G, Warhurst D (1992) In vitro antiamoebic and antiplasmodial activities of alkaloids isolated from Alstonia angustifolia roots. Phytother Res 6:121–124

    CAS  Article  Google Scholar 

  52. Xie A, Zhang K, Wu F, Wang N, Wang Y, Wang M (2016) Polydopamine nanofilms as visible light-harvesting interfaces for palladium nanocrystal catalyzed coupling reactions. Catal Sci Technol 6:1764–1771

    CAS  Article  Google Scholar 

  53. Yadav JS, Reddy BVS, Murthy CV, Kumar GM, Madan C (2001) Lithium perchlorate catalyzed reactions of indoles: an expeditious synthesis of bis(indolyl)methanes. Synthesis 2001:0783–0787

    Article  Google Scholar 

  54. Yadav J, Reddy BS, Premalatha K, Shankar KS (2008) Bismuth(III)-catalyzed rapid and highly efficient synthesis of 2-aryl-1-arylmethyl-1H-benzimidazoles in water. Can J Chem 86:124–128

    CAS  Article  Google Scholar 

  55. Ying A, Li Z, Ni Y, Xu S, Hou H, Hu H (2015) Novel multiple-acidic ionic liquids: green and efficient catalysts for the synthesis of bis-indolylmethanes under solvent-free conditions. J Ind Eng Chem 24:127–131

    CAS  Article  Google Scholar 

  56. Zeng M, Zhang X, Shao L, Qi C, Zhang X-M (2012) Highly porous chitosan microspheres supported palladium catalyst for coupling reactions in organic and aqueous solutions. J Organomet Chem 704:29–37

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. S.J.S. Flora Director, NIPER-Raebareli for their support and motivation. The authors Amit Kumar, Chetananda Patel, Pooja Patil and Shivam Vyas are thankful to Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Government of India, for granting fellowship. SAIF-CSIR-CDRI, Lucknow, is greatly acknowledged for providing spectral data. NIPER-R/Communications/035.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Abha Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supporting Information:

Supplementary material 1 FT-IR, 1H and 13C NMR spectra are given in supporting information. (DOCX 1705 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Patel, C., Patil, P. et al. Chemoselective synthesis of bis(indolyl)methanes using sulfonic acid-functionalized chitosan. Chem. Pap. 73, 3095–3104 (2019). https://doi.org/10.1007/s11696-019-00846-2

Download citation

Keywords

  • Bis(indolyl)methanes
  • Chemoselective
  • CTSA
  • Recyclable